Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a3+b3+a2c+b2c-abc
= (a+b)(a2-ab+b2)+c(a2+b2)-abc
=(a+b) [ (a+b)2-3ab]+c.[(a+b)2-2ab]-abc
=(a+b)(a+b)2-3ab(a+b)+c(a+b)2-3abc
=(a+b)2(a+b+c)-3ab(a+b+c)
=(a+b)2.0-3ab.0
=0
b) ax+ay+2x+2y+4
=a(x+y)+2(x+y)+4
=(x+y)(a+2)+4
=(a-2)(a+2)+4
=a2-4+4
=a2
c) A=1+x+x2+...+x49=>Ax=x+x2+x3+...+x50
- A=1+x+x2+...+x49
---> Ax-A=x50-1
d)(a+b)(a+c)+(c+a)(c+b)
=a2+ac+ab+bc+c2+bc+ac+ab
=a2+c2+2ac+2ab+2bc
=2b2+2bc+2ac+2ab
=2b(b+c)+2a(b+c)
=2b(b+c)(b+a)
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\)(đpcm)
Bài làm :
Ta có :
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+3a^2b^2+2a^3b+2ab^3\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+2ab+b^2\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a+b\right)^4\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\)
=> Điều phải chứng minh
a)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
b/
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\Rightarrow c^2=\left(a+b\right)^2\)
\(\Leftrightarrow c^2=a^2+b^2+2ab\)\(\Leftrightarrow a^2+b^2+ab=c^2-ab\)
\(2x^4=\left(a^2+b^2+ab\right)^2+\left(c^2-ab\right)^2\)
\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3+c^4-2abc^2+a^2b^2\)
\(=a^4+b^4+c^4+\left(4a^2b^2+2a^3b+2ab^3-2abc^2\right)\)
\(=a^4+b^4+c^4+2ab\left(2ab+a^2+b^2-c^2\right)\)
\(=a^4+b^4+c^4+0\)
\(=a^4+b^4+c^4\)
\(x-y=1\Rightarrow x^2-2xy+y^2=1\Rightarrow x^2+xy+y^2=19\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1.19=19\)
\(2,a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0ma:\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2+4abc\left(a+b+c\right)=4a^2b^2+4c^2a^2+4b^2c^2\Rightarrow a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\Leftrightarrow2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=\left(a^2+b^2+c^2\right)^2\left(dpcm\right)\)
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
a4 + b4 + c4 = (a2 + b2)2 - 2.a2 .b2 + (a+ b)4 = (x2)2 - 2a2.b2 + (a2 + b2 + 2ab)2
= x4 - 2a2b2 + (a2 + b2)2 + 4a2b2 + 4ab.(a2 + b2) = x4 + x4 + 2a2.b2 + 4ab.x2 = 2x4 + 4x2.ab + 2(ab)2
= 2. (x4 + 2x2.ab + (ab)2) = 2. (x2 + ab)2
Vậy a4 + b4 + c4 = 2.(x2 + ab)2. Em xem lại đề bài nhé