Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+3a^2b^2+2a^3b+2ab^3+b^4\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a^2+2ab+b^2\right)^2\right]\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
câu 2
a^4 + b^4 + c^4 + d^4 = 4abcd
<=> \(a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2b^2d^2=0\)
<=> \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)
<=> \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\)
Bài 1:
Áp dụng BĐt cauchy dạng phân thức:
\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)
\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)
dấu = xảy ra khi 2x+y=x+2y <=> x=y
Bài 2:
ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)
\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)
Áp dụng BĐT trên vào bài toán ta có:
\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
......
dấu = xảy ra khi a=b=c
Bài 2:
Áp dụng BĐT cauchy cho 2 số dương:
\(a^2+1\ge2a\)
\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)
thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)
cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm
dấu = xảy ra khi a=b=c=1
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+a^2b^2+2a^2b^2+2ab^3+2a^3b\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4ab^3+4a^3b\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+2b^2.2ab+2.2ab.a^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+b^2+2ab\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)