Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bun nhia cốp xki :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
<=>\(\frac{1}{9a^3+3b^2+c}\le\frac{1}{9a}+\frac{1}{3}+c\Leftrightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
<=> \(\frac{a}{9a^3+3b^2+c}\le\frac{1}{9}+\frac{1}{3}a+ac\)
Làm tương tự với 2 cái còn lại
CỘng vế với vế ba BĐT => GTLN
#)Giải :
Áp dụng BĐT Cauchy :
\(\frac{ab}{c}+\frac{bc}{a}\ge2.\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\left(1\right)\)
Chứng minh tương tự, ta được :
\(\frac{bc}{a}+\frac{ca}{b}\ge2c\left(2\right)\)
\(\frac{ab}{c}+\frac{ca}{b}\ge2a\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\)\(\Rightarrow2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\left(đpcm\right)\)
\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)
\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)
Cần c/m: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\ge3\sqrt{2}\)
Mặt khác \(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)\ge9\)
Nên ta chỉ cần c/m \(P=\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\le\frac{9}{3\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
Ta có
\(P.\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{\left(a+b\right).2}}+\frac{1}{\sqrt{\left(b+c\right).2}}+\frac{1}{\sqrt{\left(c+a\right).2}}\)
\(=\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{b+c}}.\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{c+a}}.\sqrt{\frac{1}{2}}\)
\(\le\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{b+c}+\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{c+a}+\frac{1}{2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{3}{4}\le\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)+\frac{3}{4}\)
\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3}{4}=\frac{1}{4}.3+\frac{3}{4}=\frac{3}{2}\)
Suy ra \(P\le\frac{3}{2}:\frac{1}{\sqrt{2}}=\frac{3\sqrt{2}}{2}\)
BĐT được c/m
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
An nhận nè em.
Gọi vế trái của ( ** ) là T, ta có:
\(T=\frac{m}{2}\left(Y+Y+X\right)+\left(n-\frac{m}{2}\right)X\)
Với \(X=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\), \(Y=a+b+c\), theo bài toán 1 ta có \(X\ge3\);\(XY^2\ge27\).
Suy ra:
\(T\ge\frac{m}{2}.3\sqrt[3]{XY^2}+\left(n-\frac{m}{n}\right).3\)( do \(2n\ge m\))
\(\ge\frac{9m}{2}+3\left(n-\frac{m}{n}\right)=3\left(m+n\right)\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
coi 3 số là a,b,c =>a=b=c=1
tich ủng hộ nhé