K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)(ab+bc+ac)\geq (a+b+c)^2\)

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)

Nhân theo vế 2 BĐT trên:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(ab+bc+ac).\frac{a+b+c}{abc}\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)

\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)

\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

2 tháng 6 2021

Không mất tính tổng quát giả sử \(a\ge b\ge c>0\)

\(BĐT< =>\frac{a\left(b+c\right)\left(c+a\right)+b\left(a+b\right)\left(c+a\right)+c\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{2}\)

\(< =>\frac{ac^2+ba^2+cb^2+\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b+c\right)\left(ab+bc+ca\right)-abc}\ge\frac{3}{2}\)

\(< =>2\left[ac^2+ba^2+cb^2+\left(a+b+c\right)\left(ab+bc+ca\right)\right]\ge3\left[\left(a+b+c\right)\left(...\right)-abc\right]\)

\(< =>2\left(ac^2+a^2b+cb^2\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

\(< =>ac^2+a^2b+cb^2\ge ca^2+ab^2+c^2b\)

\(< =>\left(c-b\right)\left(c-a\right)\left(a-b\right)\ge0\)(đúng)

Vậy ta có điều phải chứng minh

2 tháng 6 2021

Ta có bất đẳng thức sau \(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)( cm = bunhia phân thức )

\(< =>1+\frac{a+b}{b+c}+\frac{a+b}{c+a}+1+\frac{b+c}{a+b}+\frac{b+c}{c+a}+1+\frac{c+a}{a+b}+\frac{c+a}{b+c}\ge9\)

\(< =>\frac{a}{a+b}+\frac{2a}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}+\frac{c}{b+c}+\frac{c}{c+a}\ge6\)(*)

Đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\);\(B=\frac{a}{a+c}+\frac{b}{b+a}+\frac{c}{c+b}\);\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Khi đó bất đẳng thức (*) tương đương với \(A+B+2C\ge6\)

Do\(A+B=3\)\(=>2C\ge3=>C\ge\frac{3}{2}\)

Suy ra \(A+B+C\ge6-\frac{3}{2}=\frac{12-3}{2}=\frac{9}{2}\)(1)

Xét tổng :\(B+C=\frac{a}{a+c}+\frac{b}{b+a}+\frac{c}{c+b}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a+b}{a+c}+\frac{c+a}{b+c}+\frac{b+c}{a+b}\ge3\)(AM-GM) (2)

Từ (1) và (2) ta được \(A\ge\frac{9}{2}-3=\frac{3}{2}\)

Done !

24 tháng 4 2017

Nhân 2 vế của \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) có: \(ab+bc+ca=abc\)

Ta có: 

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a^2}{a+bc}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)

\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}\cdot\frac{a+b}{8}\cdot\frac{a+c}{8}}=\frac{3a}{4}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{b^2}{b+ca}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3c}{4}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Leftrightarrow VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{6\left(a+b+c\right)}{8}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{4}=VP\). Ta có ĐPCM

4 tháng 8 2020

Vào thống kê hỏi đáp xem nhé. Bài này chỉ cần biểu diễn dưới dạng tổng bình phương là xong.

4 tháng 8 2020

ta có \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\) (***)

do ab+bc+ca=3 nên

VT (***)=\(\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)

\(=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(a+b\right)\left(c+a\right)}\)

áp dụng bđt AM-GM ta có \(\frac{a^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge\frac{3a}{4}\)

\(\Rightarrow\frac{a^3}{\left(b+c\right)\left(c+a\right)}\ge\frac{5a-2b-c}{8}\left(1\right)\)

chứng minh tương tự ta cũng được

\(\hept{\begin{cases}\frac{b^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{5b-2c-a}{8}\left(2\right)\\\frac{c^3}{\left(a+b\right)\left(c+a\right)}\ge\frac{5c-2a-b}{8}\left(3\right)\end{cases}}\)

cộng theo vế với vế của (1),(2) và (3) ta được VT (***) \(\ge\frac{a+b+c}{4}\)

mặt khác ta dễ dàng chứng minh được \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)

đẳng thức xảy ra khi a=b=c=1 (đpcm)

8 tháng 6 2020

Áp dụng BĐT AM-GM ta có: \(\frac{a}{b^3+ab}=\frac{1}{b}-\frac{b}{a+b^2}\ge\frac{1}{b}-\frac{b}{2\sqrt{ab^2}}=\frac{1}{b}-\frac{1}{2\sqrt{a}}\ge\frac{1}{b}-\frac{1}{4}\left(\frac{1}{a}+1\right)\)

Tương tự có: \(\hept{\begin{cases}\frac{b}{c^3+ca}\ge\frac{1}{c}-\frac{1}{4}\left(\frac{1}{b}+1\right)\\\frac{c}{a^3+ca}\ge\frac{1}{a}-\frac{1}{4}\left(\frac{1}{c}+1\right)\end{cases}}\)

Cộng 3 vế BĐT ta được:  \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

Bài toán quy về chứng minh \(\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\Leftrightarrow\left(\frac{1}{a}+a\right)\left(\frac{1}{b}+b\right)\left(\frac{1}{c}+c\right)\ge3+a+b+c=6\)

BĐT cuối hiển nhiên đúng vì theo BĐT AM-GM ta có:

\(\hept{\begin{cases}\frac{1}{a}+a\ge2\\\frac{1}{b}+b\ge2\\\frac{1}{c}+c\ge2\end{cases}}\)

Dấu "=" xảy ra <=> a=b=c=1

8 tháng 6 2020

\(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\)

\(=\frac{a}{b\left(b^2+a\right)}+\frac{b}{c\left(c^2+b\right)}+\frac{c}{a\left(a^2+c\right)}\)

\(=\frac{1}{b}-\frac{b}{b^2+a}+\frac{1}{c}-\frac{c}{c^2+b}+\frac{1}{a}-\frac{a}{a^2+c}\)

\(\ge\frac{1}{b}-\frac{b}{2b\sqrt{a}}+\frac{1}{c}-\frac{c}{2c\sqrt{b}}+\frac{1}{a}-\frac{a}{2a\sqrt{c}}\)

\(=\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\frac{1}{4}\left(\frac{1}{b}-\frac{2}{\sqrt{b}}+1\right)+\frac{1}{4}\left(\frac{1}{c}-\frac{1}{\sqrt{c}}+1\right)\)\(-\frac{3}{4}\)

\(\ge\frac{3}{4}.\frac{9}{a+b+c}+\frac{1}{4}\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2-\frac{3}{4}\)

\(\ge\frac{3}{2}\)

Dấu "=" xảy ra <=> a = b = c = 1.

áp dụng bđt cauchy ta có:

\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-ab-bc-ca\ge2\left(a^2+b^2+c^2\right)-a^2-b^2-c^2\)

\(=a^2+b^2+c^2\left(Q.E.D\right)\)

13 tháng 9 2017

Theo Cauchy - Schwarz ta có : \(\left(a^2+b^2+c^2\right)\left(c^2+a^2+b^2\right)\ge\left(ab+bc+ac\right)^2\)

\(\Rightarrow a^2+b^2+c^2\ge\left|ab+bc+ac\right|\ge ab+ac+bc\)

Ta có : \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)

\(=a^2+b^2+c^2\)(đpcm)

a)

Do a,b,c > 0

nên áp dụng BĐT Svacxo ta được :

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\) ( đpcm )

Dấu '=' xảy ra \(\Leftrightarrow a=b=c\)

b)

Do a,b,c > 0

nên áp dụng BĐT Svacxo ta được :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\) ( đpcm )

Dấu '=' xảy ra \(\Leftrightarrow a=b=c\)