K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

\(a^2-a+2b+4b^2-4ab\le0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)-\left(a-2b\right)\le0\)

\(\Leftrightarrow\left(a-2b\right)^2-\left(a-2b\right)\le0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-2b-1\right)\le0\)

Mà \(a-2b>a-2b-1\) nên \(\hept{\begin{cases}a-2b\ge0\\a-2b-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a-2b\ge0\\a-2b\le1\end{cases}}}\)

\(\Rightarrow0\le a-2b\le1\) (đpcm)

Từ a+b+c=6 \(\Rightarrow\)a+b=6-c

Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9

                               \(\Leftrightarrow\)ab=9-c(a+b)

           Mà a+b=6-c (cmt)

                                \(\Rightarrow\)ab=9-c(6-c)

                                \(\Rightarrow\)ab=9-6c+c2

Ta có: (b-a)2\(\ge\)\(\forall\)b, c

  \(\Rightarrow\)b2+a2-2ab\(\ge\)0

  \(\Rightarrow\)(b+a)2-4ab\(\ge\)0

  \(\Rightarrow\)(a+b)2\(\ge\)4ab

Mà a+b=6-c (cmt)

         ab= 9-6c+c2 (cmt)

  \(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)

  \(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2

  \(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0

  \(\Rightarrow\)-3c2+12c\(\ge\)0

  \(\Rightarrow\)3c2-12c\(\le\)0

  \(\Rightarrow\)3c(c-4)\(\le\)0

  \(\Rightarrow\)c(c-4)\(\le\)0

\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)

*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)

*

27 tháng 4 2017

\(a^3+b^3\le ab\left(a+b\right)\) (1)

\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\le0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\le0\) 

Vì \(a\le0;b\le0\Rightarrow a+b\le0;\left(a-b\right)^2\ge0\forall a;b\)

\(\Rightarrow\left(a+b\right)\left(a-b\right)^2\le0\forall a;b\le0\)

\(\Rightarrow\) BĐT (1) luôn đúng \(\forall a;b\le0\)

Vậy \(a^3+b^3\le ab\left(a+b\right)\)