Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1+a+a^2+...+a^{n-1}}{1+a+a^2+...+a^n}=1+\frac{1}{a^n}\)
\(B=\frac{1+b+b^2+...+b^{n-1}}{1+b+b^2+...+b^n}=1+\frac{1}{b^n}\)
Vì \(a>b\) nên \(1+\frac{1}{a^n}< 1+\frac{1}{b^n}\)
Vậy \(A< B\)
Chúc bạn học tốt ~
an−bn=(a−b)(an−1+an−2b+....+abn−2+bn−1)⋮a−ban−bn=(a−b)(an−1+an−2b+....+abn−2+bn−1)⋮a−b (đpcm)
Với nn lẻ:
an+bn=(a+b)(an−1−an−2b+....−abn−2+bn−1)⋮a+ban+bn=(a+b)(an−1−an−2b+....−abn−2+bn−1)⋮a+b (đpcm)
a) \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)
b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)
c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)
TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH
a) \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\forall a;b\right)\)
Vậy bdt đã được cm
b) \(K=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)\)
Ta có :
\(\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(\Leftrightarrow\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n+1\right)^2\)
Mà \(n^2+3n;n^2+3n+1\) là 2 số tn liên tiếp
\(\Rightarrow K\) không phải số chính phương
a) \(bđt\Leftrightarrow a^2+2a< a^2+2a+1\)
\(\Rightarrow0< 1\)(luôn đúng)
b) \(bđt\Leftrightarrow m^2+n^2+2-2m-2n\ge0\)
\(\Leftrightarrow\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\ge0\)
\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)(đúng)
Dấu "=" khi m = n = 1
c) Áp dụng bđt cô - si với 2 số không âm:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Dấu "=" khi a = b