Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\) với a,b,c > 0
Áp dụng BĐT Chauchy cho 2 số không âm, ta có:
\(\dfrac{bc}{a}+\dfrac{ac}{b}=c\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge c\sqrt{\dfrac{b}{a}.\dfrac{a}{b}}=2c\)
\(\dfrac{ac}{b}+\dfrac{ab}{c}=a\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge a\sqrt{\dfrac{c}{b}.\dfrac{b}{c}}=2a\)
\(\dfrac{ab}{c}+\dfrac{bc}{a}=b\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge b\sqrt{\dfrac{a}{c}.\dfrac{c}{a}}=2b\)
Cộng vế theo vế ta được:
\(2\left(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)
\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )
Theo hệ quả của bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)
\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )
Từ (1) và (2)
\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{na+mb}+\dfrac{b}{nb+ma}\)
\(=\dfrac{a^2}{na^2+mab}+\dfrac{b^2}{nb^2+mab}\)
\(\ge\dfrac{\left(a+b\right)^2}{na^2+nb^2+2mab}\). Cần chứng minh BĐT
\(\dfrac{\left(a+b\right)^2}{na^2+nb^2+2mab}\ge\dfrac{2}{m+n}\)
Điều này đúng vì tương đương với \(\left(a-b\right)^2\left(m-n\right)\ge0\forall a,b,m,n>0;m>n\)
Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)
\(\Rightarrow a-\dfrac{1}{a}\ge2\)
Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)
=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))
\(\ge2.2+3.2+9=19\)
Dấu = xảy ra khi x=y=1
Giải câu 1 thôi câu 2 không hứng lắm:
\(P=\dfrac{1}{2a+3b+c+6}+\dfrac{1}{2b+3c+a+6}+\dfrac{1}{2c+3a+b+6}\)
Ta có:
\(\dfrac{1}{2a+3b+c+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{b+2}\right)=\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{2}{b+2}\right)\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{2b+3c+a+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{b+2}+\dfrac{2}{c+2}\right)\left(2\right)\\\dfrac{1}{2c+3a+b+6}\le\dfrac{1}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{c+2}+\dfrac{2}{a+2}\right)\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được:
\(P\le\dfrac{3}{16}\left(\dfrac{1}{a+b+c}+\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
\(\le\dfrac{3}{16.3\sqrt[3]{abc}}+\dfrac{3}{16}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
\(=\dfrac{1}{16}+\dfrac{3}{16}\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\left(4\right)\)
Giờ ta tính Max của \(Q=\left(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\right)\)
Vì \(abc=1\) nên không mất tính tổng quát ta giả sử \(\left\{{}\begin{matrix}ab\le1\\c\ge1\end{matrix}\right.\)
Ta có: \(Q=\dfrac{1}{2}.\left(\dfrac{1}{\dfrac{a}{2}+2}+\dfrac{1}{\dfrac{b}{2}+2}\right)+\dfrac{1}{c+2}\)
Ta có bổ đề: Với \(x,y>0;xy\le1\) thì
\(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
Áp dụng vào bài toán ta được:
\(Q\le\dfrac{2}{1+\dfrac{\sqrt{ab}}{2}}+\dfrac{1}{c+2}=\dfrac{2\sqrt{c}}{2\sqrt{c}+1}+\dfrac{1}{c+2}\)
Xét hàm số \(f\left(\sqrt{c}\right)=\dfrac{2\sqrt{c}}{2\sqrt{c}+1}+\dfrac{1}{c+2}\) với \(\sqrt{c}\ge1\) thì hàm số \(f\left(\sqrt{c}\right)\) nghịch biến. Vậy Q đạt GTLN khi c bé nhất.
\(\Rightarrow Q\le f\left(1\right)=1\left(2\right)\)
Từ (4) và (5) ta suy ra
\(P\le\dfrac{1}{16}+\dfrac{3}{16}.1=\dfrac{1}{4}\)
Vậy GTLN là \(P=\dfrac{1}{4}\) đạt được khi \(a=b=c=1\)
2) A = n3 - n2 + n - 1
A = n2(n - 1) + (n - 1)
A = (n - 1)(n2 + 1)
Để A nguyên tố thì n > 1
=> n2 + 1 > 1
Mà A = (n - 1)(n2 + 1) là số nguyên tố, chỉ gồm 2 ước là 1 và chính nó
Nên A = n2 + 1; n - 1 = 1
=> n = 2 (TM)
b) n5 - n + 2
= n(n4 - 1) + 2
= n(n2 - 1)(n2 + 1) + 2
= n(n - 1)(n + 1)(n2 + 1) + 2
n(n - 1)(n + 1) là tích 3 số nguyên liên tiếp do n \(\in N\) nên n(n - 1)(n + 1) chia hết cho 3
=> n(n - 1)(n + 1)(n2 + 1) + 2 chia 3 dư 2, không là số chính phương
Vậy ...
Đầu tiên ta cm bđt:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)
Áp dụng ta có:
\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\ge\dfrac{9}{3+ab+bc+ca}\)
Cần cm:\(ab+bc+ca\le3\)
Hay \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)
=>đpcm
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(A=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
\(A\ge\dfrac{\left(1+1+1\right)^2}{3+ab+bc+ac}=\dfrac{9}{3+ab+bc+ac}\)
Mặt khác,theo hệ quả AM-GM: \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}\le\dfrac{3^2}{3}=3\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ac}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
a) \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\forall a;b\right)\)
Vậy bdt đã được cm
b) \(K=n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)\)
Ta có :
\(\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(\Leftrightarrow\left(n^2+3n\right)^2< \left(n^2+3n\right)^2+2\left(n^2+3n\right)< \left(n^2+3n+1\right)^2\)
Mà \(n^2+3n;n^2+3n+1\) là 2 số tn liên tiếp
\(\Rightarrow K\) không phải số chính phương