Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(A=\frac{a+1}{a^2+a+1}-\frac{b+1}{b^2+b+1}=\frac{\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)}{\left(a^2+a+1\right)\left(b^2+b+1\right)}\)
Xét tử: \(T=\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)=ab^2-ba^2+ab-ba+a-b+b^2-a^2+b-a+1-1\)
\(=ab\left(b-a\right)+\left(a-b\right)+\left(b^2-a^2\right)-\left(a-b\right)\)
\(=ab\left(b-a\right)+\left(b-a\right)\left(b+a\right)=\left(b-a\right)\left(ab+a+b\right)< 0\), do a>b>0
Vậy A<0
Hay: \(\frac{a+1}{a^2+a+1}< \frac{b+1}{b^2+b+1}\)
From \(a>b\Rightarrow a^2>b^2\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow\frac{1+a}{a^2+a+1}< \frac{1+b}{b^2+b+1}\)\(\Rightarrow x< y\)
lí luận tạm thời nên có thể chưa chặt chẽ
Ta có: \(a>b>0\)
\(\Rightarrow a^2>b^2\)
\(\Rightarrow a^2+a>b^2+b\)
\(\Rightarrow a^2+a+1>b^2+b+1\)
\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)
\(\Rightarrow x< y\)
\(x=\frac{a+1}{a^2+a+1}=1-\frac{a^2}{a+a+1}\)
\(y=\frac{b+1}{1+b+b^2}=1-\frac{b^2}{1+b+b^2}\)
Do \(\frac{a^2}{a^2+a+1}>\frac{b^2}{b^2+b+1}\Rightarrow x< y\)
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
Đặt \(m=1-x=1-\frac{a+1}{a^2+a+1}=\frac{a^2+a+1-a-1}{a^2+a+1}=\frac{a^2}{a^2+a+1}\)
\(n=1-y=1-\frac{b+1}{b^2+b+1}=\frac{b^2+b+1-b-1}{b^2+b+1}=\frac{b^2}{b^2+b+1}\)
=>\(m:n=\frac{a^2}{a^2+a+1}:\frac{b^2}{b^2+b+1}\)
=>\(m:n=\frac{a^2}{a^2+a+1}.\frac{b^2+b+1}{b^2}\)
=>\(m:n=\frac{a^2.\left(b^2+b+1\right)}{\left(a^2+a+1\right).b^2}\)
=>\(m:n=\frac{a^2.b^2+a^2.b+a^2}{a^2.b^2+a.b^2+b^2}\)
=>\(m:n=\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}\)
Vì \(a>b=>ab.a>ab.b;a^2>b^2\)
=>\(a^2.b^2+ab.a+a^2>a^2.b^2+ab.b+b^2\)
=>\(\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}>1\)
=>m:n>1
=>m:n
=>1-x>y-y
=>x<y
Vậy x<y