Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a/b = b/c ( a,b,c khác 0) CM a mũ 2 + b mũ 2/ b mũ 2 + c mũ 2 = ( a+ 2018b) mũ 2/ (b+2018c) mũ 2
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Ta có \(\frac{a}{c}=\frac{c}{b}\)=> \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+b^2}{c^2+d^2}\) (1)\
Ta lại có : \(\frac{a^2}{c^2}=\frac{a}{c}.\left(\frac{a}{c}\right)=\frac{a}{c}.\left(\frac{c}{b}\right)=\frac{a}{b}\) ( vì \(\frac{a}{c}=\frac{c}{b}\)) (2)
Từ 1,2 => đpcm
Ta có:
\(\frac{a}{c}=\frac{c}{b}\Rightarrow\frac{a}{b}=c^2\)
Ta lại có:
\(\frac{a^2+c^2}{b^2+c^2}\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)(đpcm)
Trả lời:
Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=a.b\)
Khi đó: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+a.b}{b^2+a.b}\)
\(=\)\(\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)