Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số tự nhiên \(a,b,c,d,e\) thỏa mãn: \(a^b=b^c=c^d=d^e=e^a\). Chứng minh rằng: \(a=b=c=d=e\).
Nếu a khác b => a>b hoặc a<b
Xét a<b ta có :ab=bc=cd=de=ea và a<b => b>c;c<d;d>e;e<a ( vô lý)
=> a=b
Xét a>b ta có: ab=bc=cd=de=ea và a>b =>b<c;c>d;d<e;e>a (vô lý)
=>a=b
Nếu a=b=1 thì c=d=e=1; nếu a=b lớn hơn hoặc bằng 2 thì b=c=d=e
=> a=b=c=d=e (ở đây mk ko xét a=b=0 vì ko có 00 nha bạn)
a)Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác,theo tính chất dãy tỉ số bằng nhau,ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+b+c+d}{b+d+c+e}=\frac{a+b+c+d}{b+c+d+e}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)^{\left(đpcm\: \right)}\)
b) Xin phép sửa đề! =) CMR: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Rightarrow\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{abcd}{bcde}=\frac{a}{e}\) (1)
Mặt khác theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\) (2)
Từ (1) và (2) ta có: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}^{\left(đpcm\right)}\)
P/s: Bạn đánh sai đề hoài như thế sẽ ảnh hưởng đến việc giải bài của các bạn khác gây khó khăn cho họ. Như vậy,họ sẽ không giúp bạn nữa. Rút kinh nghiệm lần sau đánh đề cẩn thận hơn nhé!
a) Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}\Leftrightarrow\frac{abcd}{bdce}=\frac{a}{2}\) (1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a+c+b+d}{b+d+c+e}\)(2)
Từ (1) và (2) \(\Rightarrow\)\(\frac{a}{e}=\left(\frac{a+b+c+d}{b+c+d+e}\right)\)( đpcm )
b) Mình sửa lại tí nha: \(\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)
Có \(\frac{a}{b}=\frac{c}{d}=\frac{b}{c}=\frac{d}{e}=\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{\left(abcd\right)^4}{\left(bdce\right)^4}=\frac{a}{e}\)(1)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^4}{b^4}=\frac{c^4}{d^4}=\frac{b^4}{c^4}=\frac{d^4}{e^4}=\frac{a^4+c^4+b^4+d^4}{b^4+d^4+c^4+e^4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{e}=\frac{a^4+b^4+c^4+d^4}{b^4+c^4+d^4+e^4}\)( đpcm )
Bài của bạn: Cho thêm điều kiện của a;b; c; d; e
Bổ sung thêm: Cho a; b; c;d; e là số tự nhiên thỏa mãn .....
+) Nếu một trong 5 số a; b; c;d;e bằng 1 . Giả sử a = 1 => ab = 1 => c = 0 hoặc b = 1
Nếu c =0 => cd = 0 \(\ne\) bc = 1 . Vậy b = 1. Tiếp tục, ta suy ra c = d = e = 1
Vậy a = b = c = d = e (= 1)
+) Nếu các số đều > 1:
Tham khảo bài Lê Chí Cường
Chú ý : a > b => ab > bb đúng nếu a > b > 1
Giả sử a>b=>ab=bc>bb=>c>b
=>bc=cd<cc=>d<c
=>cd=de>dd=>e>d
=>de=ea>ee=>a>e
=>ea=ab>aa=>b>a=>Trái giả thiết(loại)
Giả sử a<b=>ab=bc<bb=>c<b
=>bc=cd>cc=>d>c
=>cd=de>dd=>e>d
=>de=ea<ee=>a<e
=>ea=ab<aa=>b<a=>Trái giả thiết(loại)
=>a=b(vì a<b và a>b đều trái giả thiết)
=>ab=bb=bc=>b=c
=>bc=cc=cd=>c=d
=>cd=dd=de=>d=e
=>a=b=c=d=e
Vậy a=b=c=d=e
d= d* 1
= d* (af- be)
= daf- dbe
= daf- bcf+ bcf- dbe
= f (ad- bc)+b (cf- de)
Do \(\frac{a}{b}\) >\(\frac{c}{d}\) >\(\frac{e}{f}\)nên ad- bc >=af- be=1, cf- de>=1
=> f(ad- be)+ b(cf- de) >= f + b
<=> d >= b+f (đpcm)
Giả sử a > b.
Kết hợp với ab = bc suy ra b < c.
Mà bc = cd nên c > d
Lại có cd = de nên d < e
Mặt khác: de = ea suy ra e > a
Mà ab = ea nên a < b (vô lí)
Giả sử: a < b.Chứng minh tương tự như trên thì điều này vô lí.
Vậy a = b
Mà ab = bc nên b = c
Tương tự như vậy ta được a = b = c = d = e.