K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2015

Bài của bạn: Cho thêm điều kiện của a;b; c; d; e

Bổ sung thêm: Cho a; b; c;d; e là số tự nhiên thỏa mãn .....

+) Nếu một trong 5 số a; b; c;d;e bằng 1 . Giả sử a = 1 => a= 1 => c = 0 hoặc b = 1

Nếu c =0 => c= 0 \(\ne\) b= 1 . Vậy b = 1. Tiếp tục, ta suy ra c = d = e = 1

Vậy a = b = c = d = e (= 1)

+) Nếu các số đều > 1: 

Tham khảo bài Lê Chí Cường 

Chú ý : a > b => a> bb đúng nếu a > b > 1 

5 tháng 9 2015

Giả sử a>b=>ab=bc>bb=>c>b

=>bc=cd<cc=>d<c

=>cd=de>dd=>e>d

=>de=ea>ee=>a>e

=>ea=ab>aa=>b>a=>Trái giả thiết(loại)

Giả sử a<b=>ab=bc<bb=>c<b

=>bc=cd>cc=>d>c

=>cd=de>dd=>e>d

=>de=ea<ee=>a<e

=>ea=ab<aa=>b<a=>Trái giả thiết(loại)

=>a=b(vì a<b và a>b đều trái giả thiết)

=>ab=bb=bc=>b=c

=>bc=cc=cd=>c=d

=>cd=dd=de=>d=e

=>a=b=c=d=e

Vậy a=b=c=d=e

 

2 tháng 7 2015

ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b\(b^d\)(Vì c =d)

Mà  bc cd = d= ed

Nên \(b^d\)cd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = \(a^c\)và \(a^c\)bc = cd = d= ed

=> a,b,c,d bằng nhau.

15 tháng 7 2015

ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.

ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.

ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.

ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.

ab = bc = cd = d= ed

Ta có: d= ed

=> d và e bằng nhau.

Lại có: cd = ed

=> c và e bằng nhau

=> c,d,e bằng nhau

=> b$b^d$bd(Vì c =d)

Mà  bc cd = d= ed

Nên $b^d$bdcd = d= ed

=> b,c,d,e bằng nhau.

Tiếp tục có: ab = bc = cd = d= ed

Vì b,c,d,e bằng nhau nên ab = $a^c$acvà $a^c$acbc = cd = d= ed

=> a,b,c,d bằng nhau.

11 tháng 4 2017

Thay b^4=(ac)^2 và tương tự với d^4

Từ đó đặt thừa số chung và sẽ ra kết quả!

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

Ta có :

\(a^2+b^2+c^2+d^2+e^2\)

\(=\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\)

Ta lại có :

\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\) \(\dfrac{a^2}{4}-ab+b^2\ge0\) \(\dfrac{\Rightarrow a^2}{4}+b^2\ge ab\)

Tương tự :

\(\dfrac{a^2}{4}+c^2\ge ac\)

\(\dfrac{a^2}{4}+d^2\ge ad\)

\(\dfrac{a^2}{4}+e^2\ge ae\)

\(\Rightarrow\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\ge ab+ac+ad+ae\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

2 tháng 8 2017

cảm ơn bạn

23 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\) (1)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b) Từ (*) ta có:

\(\dfrac{a}{b}=\dfrac{bk}{b}=k\) (3)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (4)

Từ (3) và (4) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

c) Từ (*) ta có:

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{bk}{b\left(3k+1\right)}=\dfrac{k}{3k+1}\) (5)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{dk}{d\left(3k+1\right)}=\dfrac{k}{3k+1}\) (6)

Từ (5) và (6) suy ra \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

d) Từ (*) ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (7)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (8)

Từ (7) và (8) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

e) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (9)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2.k^2-b^2}{d^2.k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b}{d}\) (10)

Từ (9) và (10) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

f) Từ (*) ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (11)

\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b}{d}\) (12)

Từ (11) và (12) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

31 tháng 3 2017

a) Vừa nhìn đề biết ngay sai

Sửa đề:

Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)

Giải:

Ta có:

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)

\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)

\(=5a-3b+2c=0\)

\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\)\(P^2\left(-2\right)\ge0\)

Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)

b) Giải:

Từ giả thiết suy ra:

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có:

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)

31 tháng 3 2017

a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c

P(2) = a.\(2^2\)+b.2+c = 4a+2b+c

=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0

<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)

Nếu P(1) = P(2) => P(1).P(2) = 0

Nếu P(1) = -P(2) => P(1).P(2) < 0

Vậy P(1).P(2)\(\le\)0

b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)

\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)

Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

15 tháng 10 2016

b2 = ac => \(\frac{a}{b}=\frac{b}{c}\)

c2 = bd => \(\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}\)

Theo tính chất dãy tỉ số bằng nhau

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

=> Đpcm