Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> (a+b+c)(1/a+b +a/b+c +1/c+a)=2010 . 1/2010
=>(a+b+c) /(a+b) +(a+b+c)/(b+c) + (a+b+c)/(a+c)=1
=> 1 +c/a+b + 1 +a/b+c + 1 +b/a+c=1
=>a/b+c +b/a+c +c/a+b =-2
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(\Rightarrow S=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{c+a}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)
\(\Rightarrow S=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3=2016.\frac{1}{90}-3=\frac{97}{5}\)
Vậy....................
Ta có \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=> \(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Nếu a + b + c = 0
=> a + b = -c
b + c = -a
a + c = -b
Khi đó P = \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> a = b = c
Khi đó P \(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Vậy khi a + b + c = 0 thì P = -1
khi a + b + c \(\ne\)0 thì P = 8
Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)
Tương tự: (b+c-a)/a=1 =>b+c=2a (2)
(c+a-b)/b=1 =>c+a=2b (3)
Thay (1), (2), (3) vào P, ta có:
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8
S=\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
=>S+3=\(\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
=>S+3=\(\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
=>S+3=(a+b+c).\(\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
Thay a + b + c = 2011 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/2010 vào S ta đc:
S+3=2011.1/2010
=>S=2011/2010-3
=>S=\(\frac{-4019}{2010}\)
Vậy S=-4019/2010 với a + b + c = 2011 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/2010.
\(S+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2010.\frac{1}{3}=670\)
\(\Rightarrow S=670-3=667\)