K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

a) Xét ΔABE  và ΔACF có

Alà góc chung

AEB=AFC(=90^O)

=> ΔABE đồng dạng ΔACF (g.g)

=>AF/AE=AC/AB

=> AB/AE=AC/AF

XétΔAEF và  ΔABC có

AB/AE=AC/AF

Và Agóc chung

Suy raΔAEF đồng dạngΔABC( c.g.c) 

4 tháng 5 2018

tb. Kéo dài BH cắt AC tại K 

Vì H là điểm đối xứng của M qua BC (gt) => BC là đường trung trực của HM (định nghĩa đối xứng trục) => BH = BM (định lý thuận) => \(\Delta BHM\)cân tại B (định nghĩa) => BC là đường phân giác của \(\widehat{HBM}\)(định lý 1) => \(\widehat{CBM}=\widehat{CBH}\)\(=\widehat{CBK}\)(1)

Xét đường tròn (O) có: \(\widehat{CBM}=\widehat{CAM}(=\frac{1}{2}sđ\widebat{CM})\)(2)

Từ (1) và (2) => \(\widehat{CBK}=\widehat{CAM}=\widehat{CAD}\)(do A,D,M => \(\widehat{CAM}=\widehat{CAD}\)) (3)

Xét \(\Delta ACD\)có: \(\widehat{ACD}+\widehat{CAD}=90^o\)hay \(\widehat{KCB}+\widehat{CAD}=90^o\)(do A,K,C và B,D,C => \(\widehat{ACD}=\widehat{KCB}\)) (4)

Thay (3) vào (4) => \(\widehat{CBK}+\widehat{KCB}=90^o\)

Mà trong \(\Delta BCK\)thì : \(\widehat{CBK}+\widehat{KCB}+\widehat{BKC}=180^o\Rightarrow\widehat{BKC}=90^o\Rightarrow BK\perp AC\)=> BK là đường cao của \(\Delta ABC\)

Lại có H là giao điểm của AD và BK => H là trực tâm của \(\Delta ABC\)(đpcm)

c. Vì tứ giác BDME là tứ giác nội tiếp (cmt) => \(\widehat{MED}=\widehat{MBD}\left(=\frac{1}{2}sđ\widebat{MD}\right)\)\(\widehat{MBC}\)(do B,D,C ) = \(\widehat{MAC}\)\(\widehat{MAF}\)(do A,F,C )(5)

Tứ giác AEMF có: \(\widehat{AEM}+\widehat{AFM}=90^o+90^o=180^o\)(do ME\(\perp AB\)tại E (gt) => \(\widehat{AEM}=90^o\)và MF \(\perp AC\)tại F (gt) => \(\widehat{AFM}=90^o\)

=> Tứ giác AEMF là tứ giác nội tiếp( Dhnb) => \(\widehat{MEF}=\widehat{MAF}\)(cùng = \(\frac{1}{2}sđ\widebat{MF}\)) (6)

Từ (5) và (6) => \(\widehat{MED}=\widehat{MEF}\Rightarrow\)3 điểm E, D, F thẳng hàng (2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm

31 tháng 7 2017

A B C H E I D

Ta có \(AB=AD\Rightarrow\Delta ABD\)vuông  cân tại A 

\(\Rightarrow\widehat{ADI}=45^0\Rightarrow\widehat{EID}=45^0\Rightarrow\Delta IED\)vuông cân tại \(E\Rightarrow IE=ED\)

Xét \(\Delta ABD\)có \(IE\)song song \(AB\Rightarrow\frac{IB}{ID}=\frac{AE}{ED}\)

Mà \(IE=ED\Rightarrow\frac{IB}{ID}=\frac{AE}{IE}\left(đpcm\right)\)

b. Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{HC}\)

Có \(\widehat{B}+\widehat{C}=90^0;\widehat{BAH}+\widehat{B}=90^0\Rightarrow\widehat{BAH}=\widehat{C}\)

Lại có \(\widehat{BAH}=\widehat{AIE}\)Vì 2 góc ở vị trí so le trong \(\Rightarrow\widehat{C}=\widehat{AIE}\)

Xét \(\Delta ABC\)và \(\Delta EAI\)

có \(\hept{\begin{cases}\widehat{A}=\widehat{E}=90^0\\\widehat{C}=\widehat{AIE}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta EAI\left(g-g\right)}\)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{IE}\)

Lại có \(\frac{AE}{EI}=\frac{IB}{ID}\Rightarrow\frac{IB}{ID}=\frac{AB}{AC}\Rightarrow\frac{IB^2}{ID^2}=\frac{HB}{HC}\left(đpcm\right)\)