K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

ta có : 4b^2c^2=(2bc)^2 ; a,b,c >0

<=> (2bc-b^2-c^2+a^2)(2bc+b^2+c^2-a^2)

,=. (-(b-c)^2+a^2)((b+c)^2-a^2)

= (a-b+c)(a+b-c)(b+c-a)(b+c+a)

27 tháng 9 2017

ms nãy mik đã chứng minh rồi chịu khó lướt tí

25 tháng 12 2015

Sai đề kìa 

a  chứ ko phải c

1 tháng 1 2018

câu a làm theo hằng đẳng thức 

câu b ta sẽ đc (b^2 +c^2 -a^2 -2bc )(b^2 +c^2 -a^2 +2bc ) = { (b-c)^2 -a^2 } {(b+c)^2-a^2}

theo bất đẳng thức trong tam giác thì hiệu 2 cạnh  luôn nhỏ hơn cạnh còn lại nên {(b-c)^2-a^2} <0 

mà {(b+c)^2-a^2} >0 \(\Rightarrow\)A<0 

k cho mk cái nha

a, \(A=\left(b^2+c^2-a^2\right)-4b^2c^2\)

\(\Rightarrow A=\left(b^2+c^2-a^2\right)-\left(2bc\right)^{^2}\)

\(\Rightarrow A=\left(b^2+c^2-a^2-2bc\right)\left(b^2+c^2-a^2+2bc\right)\)

\(\Rightarrow A=\left[\left(b-c\right)^2-a^2\right]\left[\left(b+c\right)^2-a^2\right]\)

\(\Rightarrow A=\left(c-b-a\right)\left(c-b+a\right)\left(c+b-a\right)\left(c+b+a\right)\)

b, Như bạn Trần Thị Nhung

5 tháng 2 2016

a b

vì tổng của 3 gốc bằng 180

nên 180>0

 

vậy thôi