K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z

nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền

ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)

<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca

<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)

Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông 

Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.

Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
 do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,

Áp dụng định lý Pytago.Ta chứng minh được :

x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )

NHỚ TK MK NHALưu Đức Mạnh

20 tháng 6 2015

a2 = (m2 + n2) = m4 + 2m2.n2 + n4

b2 = (m2 - n2)2   = m4 - 2m2.n2 + n4 

c2 = (2mn)2 = 4m2.n2 

Nhận xét:  a2 - b2 = c2 => a2 = b2 + c2

Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông

24 tháng 9 2016

khó quá

17 tháng 7 2015

( a +b)^2 = a^2 + b^2 + 2ab = 8S 

S = 1/2 ab thay vào ta có :

 a^2 + b^2 + 2ab = 8.1/2.a.b

a^2 + b^2 + 2ab = 4ab

=> a^2 + b^2 - 2ab - 4ab = 0 

=> a^2  - 2ab + b^2 = 0 => ( a - b)^2 = 0 => a - b = 0 => a = b 

=> tam giác Đó vuông cân 

=> HAi góc còn lại là 45 độ 

4 tháng 8 2015

tính đc x^2-y^2-z^2=a^2-^b^2-c^2
mà a^2=b^2+c^2
suy ra x^2-y^2-z^2=0
suy ra x^2=y^2+z^2
vậy x;y;z là đọ dài của tam giác vuông
---------------------------------------------------------------------
li-ke cho mình nhé bn
Quynh Anh Quach
 

2 tháng 8 2015

=> 2(a^2 + b^2 + c^2) = 2 ( ab + bc +ca) 

=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac 

=> a^2 - 2ab + b^2 + b^2 - 2bc+ c^2 + c^2 - 2ac + a^2 = 0

=> ( a- b)^2 + ( b-  c)^2 + ( c -a )^2 = 0 

Vì ( a- b)^2>=0  (1)

   ( b - c)^2 >= 0 (2)

     ( c -a )^2 >= 0  (3)

Từ (1)(2) và (3) => ( a- b)^2 + ( b-  c)^2 + ( c -a )^2 = 0 khi 

a - b = 0 và b - c = 0 và c - a = 0 

=> a = b  và b = c  và c = a 

=> a= b =c 

VẬy là tam giác đều ĐÁp ấn C

2 tháng 8 2015

a^2+b^2+c^2=ab+bc+ca=>2(a^2+b^2+c^2)=2(ab+ac+ca)

2a^2+2b^2+2c^2-2ab-2ac-2bc=0.

a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+c^2=0

(a-b)^2+(b-c)^2+(c-a)^2=0. => (a-b)^2=0 => a-b=0 => a=b

(b-c)^2=0 => b-c=0 => b=c

(c-a)^2=0 => c-a=0 =>c=a. Vậy a=b=c. Do đó tam giác đó là tam giác đều => C là đáp án đúng