Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (1)
Xét 2 trường hợp:
- TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\)
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)
\(P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)
- TH2: a + b + c \(\ne\) 0
Từ (1) \(\Rightarrow\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)
\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)
\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1
=>\(\frac{a+b-c}{c}=1\)
a+b-c=c
2c=a+b
=>\(\frac{b+c-a}{a}=1\)
b+c-a=a
2a=b+c
=>\(\frac{c+a-b}{b}=1\)
c+a-b=b
=>c+a=2b
ta co \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{c+b}{b}\right)\)
=\(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
Áp dụng tính chất hãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a+b=2c;b+c=2a;a+c=2b\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{b}{a}=\frac{a}{c}=\frac{c}{b}=1\)
\(\Rightarrow B=2.2.2=8\)
ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a-a+a+b+b-b-c+c+c}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)
nếu a+b+c =0
=> a =0-b-c => a = -(b+c)
b = 0-a-c => b = -(a+c)
c = 0-a-b => c = -(a+b)
thay vào \(B=\left(1+\frac{-\left(a+c\right)}{a}\right).\left(1+\frac{-\left(b+c\right)}{c}\right).\left(1+\frac{-\left(a+b\right)}{b}\right)\)
\(B=\left(\frac{a-\left(a+c\right)}{a}\right).\left(\frac{c-\left(b-c\right)}{c}\right).\left(\frac{b-\left(a+b\right)}{b}\right)\)
\(B=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}\)
\(B=-1\)
nếu a+b+c khác 0
mà \(\frac{a+b+c}{c+a+b}=\frac{a}{c}=\frac{b}{a}=\frac{c}{b}=1\Rightarrow a=b=c\)
=> \(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
\(B=\left(1+1\right).\left(1+1\right).\left(1+1\right)\)
\(B=2.2.2\)
\(B=8\)
KL: B= -1 hoặc B=8
Chúc bn học tốt !!!!
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)
TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)
\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)
xét a+b+c khác 0
=> a=b=c
=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)
Vậy B=-1 hay B=8
p/s: bài này gây khá nhiều tranh cãi :>
Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1
Ta có : a+b-c/c=1 => a+b-c=c => a+b+c=3c (1)
Ta có : b+c-a/a=1 => b+c-a=a => a+b+c=3a (2)
Ta có : c+a-b/b=1 => c+a-b=b => a+b+c=3b (3)
Từ (1);(2);(3) => 3c=3a=3b => a=b=c => b/a=1 ; a/c=1 ; c/b=1
=> B= (1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) = 2.2.2 = 8
Ta có:
(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0
=> a+b-c=0 =>a+b=c
b+c-a=0 =>b+c=a
c+a-b=0 =>c+a=b
=>B=(a+b)/a.(c+a)/c.(b+c)/b
=c/a.b/c.a/b=1
TK!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có:
(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0
=> a+b-c=0 =>a+b=c
b+c-a=0 =>b+c=a
c+a-b=0 =>c+a=b
=>B=(a+b)/a.(c+a)/c.(b+c)/b
=c/a.b/c.a/b=1
Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\left(1\right)\) Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c-b}{c+a+b}\)
\(=\frac{\left(a+a-a\right)+\left(b+b-b\right)+\left(c+c-c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow a=b=c\)
\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)+\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)
\(\)\(\Rightarrow B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=2^3=8\)
Vậy \(B=8\)
áp dụng tính chất dãy tỉ số bằng nhau có
\(\frac{a+b-c}{c}\)=\(\frac{b+c-a}{a}\)=\(\frac{c+a-b}{b}\)=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1
=>\(\frac{a+b-c}{c}\)=1=>a+b-c=c=>a+b=2c
tương tự ta được b+c=2a, c+a=2b
rồi bạn thay vào B là xong