\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Áp dụng tính chất hãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a+b=2c;b+c=2a;a+c=2b\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{b}{a}=\frac{a}{c}=\frac{c}{b}=1\)

\(\Rightarrow B=2.2.2=8\)

11 tháng 4 2018

ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a-a+a+b+b-b-c+c+c}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)

 nếu a+b+c =0

=> a =0-b-c => a = -(b+c)

b     = 0-a-c => b = -(a+c)

c      = 0-a-b => c = -(a+b)

thay vào \(B=\left(1+\frac{-\left(a+c\right)}{a}\right).\left(1+\frac{-\left(b+c\right)}{c}\right).\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(\frac{a-\left(a+c\right)}{a}\right).\left(\frac{c-\left(b-c\right)}{c}\right).\left(\frac{b-\left(a+b\right)}{b}\right)\)

\(B=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}\)

\(B=-1\)

 nếu a+b+c khác 0

mà \(\frac{a+b+c}{c+a+b}=\frac{a}{c}=\frac{b}{a}=\frac{c}{b}=1\Rightarrow a=b=c\)

=> \(B=\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)

\(B=\left(1+1\right).\left(1+1\right).\left(1+1\right)\)

\(B=2.2.2\)

\(B=8\)

KL: B= -1 hoặc B=8

Chúc bn học tốt !!!!

                                                            

16 tháng 3 2017

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{b}{a}=1;\frac{a}{c}=1;\frac{c}{b}=1\)

\(\Rightarrow B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

21 tháng 10 2016

Ta có:

(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0

=> a+b-c=0 =>a+b=c

b+c-a=0 =>b+c=a

c+a-b=0 =>c+a=b

=>B=(a+b)/a.(c+a)/c.(b+c)/b

      =c/a.b/c.a/b=1

8 tháng 1 2017

TK!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ta có:

(a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/(c+a+b)=0/(c+a+b)=0

=> a+b-c=0 =>a+b=c

b+c-a=0 =>b+c=a

c+a-b=0 =>c+a=b

=>B=(a+b)/a.(c+a)/c.(b+c)/b

      =c/a.b/c.a/b=1

9 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{\left(a+b-c\right)+\left(b+c-a\right)+\left(c+a-b\right)}{c+a+b}=\frac{a+b+c}{a+b+c}=1\) (1)

Xét 2 trường hợp:

  • TH1: a + b + c = 0 \(\Rightarrow\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}\)

\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}\)

\(P=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-1\)

  • TH2: a + b + c \(\ne\) 0

Từ (1) \(\Rightarrow\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=1\)

\(\Rightarrow\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}\)\(\Rightarrow\begin{cases}a+b=2c\\b+c=2a\\c+a=2b\end{cases}\)

\(P=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=8\)

 

9 tháng 11 2016

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

=\(\frac{a+b-c+b+c-a+c+a-b}{a+b+c}\)=\(\frac{a+b+c}{a+b+c}\)=1

=>\(\frac{a+b-c}{c}=1\)

a+b-c=c

2c=a+b

=>\(\frac{b+c-a}{a}=1\)

b+c-a=a

2a=b+c

=>\(\frac{c+a-b}{b}=1\)

c+a-b=b

=>c+a=2b

ta co \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(\frac{a+b}{a}\right)\left(\frac{a+c}{c}\right)\left(\frac{c+b}{b}\right)\)

=\(\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)

26 tháng 7 2017

Theo tính chất dãy tỉ số bằng nhau ta có : a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/a+b+c = a+b+c/a+b+c = 1

Ta có : a+b-c/c=1  => a+b-c=c  => a+b+c=3c   (1)

Ta có : b+c-a/a=1  => b+c-a=a  => a+b+c=3a   (2)

Ta có : c+a-b/b=1  => c+a-b=b  => a+b+c=3b   (3)

Từ (1);(2);(3)   => 3c=3a=3b  => a=b=c  => b/a=1 ; a/c=1 ; c/b=1

=> B= (1+b/a)(1+a/c)(1+c/b)  = (1+1)(1+1)(1+1) = 2.2.2 = 8

21 tháng 11 2019

=8

8 8 cái địt mẹ mày

7 tháng 8 2020

Bài làm:

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)

\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\\c+a-b=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b+c=3c\\a+b+c=3a\\a+b+c=3b\end{cases}}\Rightarrow a=b=c\)

Thay vào ta tính được:

\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)

\(B=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2^3=8\)

Vậy B = 8

7 tháng 8 2020

Ta có : \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

Nếu a + b + c = 0

=> a + b = -c

=> a + c = -b

=> b + c = -a

Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{a+c}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=-\frac{abc}{abc}=-1\)

Nếu a + b + c \(\ne\)0

=> \(\frac{1}{c}=\frac{1}{a}=\frac{1}{b}\Rightarrow a=b=c\)

Khi đó B = \(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)

Vậy khi a + b + c = 0 => B = -1

khi a + b + c \(\ne\)0 => B = 8

18 tháng 3 2016

xét a +b+c = 0 => a+b=-c; c+a=-b;b+c=-a 

 thay vào B ta sẽ đc B = -1

XÉT a+b+c khác 0 

áp dụng tính chất của dãy tỉ số bằng nhau 

=> a+b=2c;b+c=2a;a+c=2b

=>S = 8

18 tháng 3 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)

=>a+b-c=c =>a+b=2c  (1)

   b+c-a=a=>b+c=2a    (2)

   c+a-b=b=>c+a=2b     (3)

Thay (1);(2);(3) vào B ta có;

\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{2c.2b.2a}{a.c.b}=2.2.2=8\)

Vậy B=8

30 tháng 11 2018

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)(ĐK:a,b,c khác 0)

TH1: a+b+c=0=> a=-(b+c)=> b=-(a+c)=> c=-(a+b)

\(\Rightarrow B=\left(\frac{a-a-c}{a}\right)\left(\frac{c-b-c}{c}\right)\left(\frac{b-a-b}{b}\right)=\frac{-c}{a}.\left(-\frac{b}{c}\right).\left(-\frac{a}{b}\right)=-1\)

xét a+b+c khác 0

=> a=b=c

=> \(B=\left(1+\frac{a}{a}\right).\left(1+\frac{b}{b}\right).\left(1+\frac{c}{c}\right)=2^3=8\)

Vậy B=-1 hay B=8

p/s: bài này gây khá nhiều tranh cãi :>