K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{b^2\left(a+1\right)}{1+b^2}\ge a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab}{2}-\frac{b}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc}{2}-\frac{c}{2};\frac{c+1}{1+a^2}\ge a+1-\frac{ac}{2}-\frac{a}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c+3-\frac{ab+bc+ca}{2}-\frac{a+b+c}{2}\)

\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}-\frac{3}{2}=3=VP\)

Khi \(a=b=c=1\)

29 tháng 4 2020

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)\(=\left(\frac{1}{a}+\frac{3a}{2}\right)+\left(\frac{1}{b}+\frac{3b}{2}\right)+\left(\frac{1}{c}+\frac{3c}{2}\right)\)

*Nháp*

Dự đoán điểm rơi tại a = b = c = 1 khi đó  \(VT=\frac{15}{2}\)

Ta dự đoán BĐT phụ có dạng \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+n\)(Ta thấy các hạng tử trong điều kiện đã cho ban đầu đều có bậc là 2 nên VP của BĐT phụ cũng có bậc là 2)    (*)

Do đó ta có: \(\frac{1}{a}+\frac{3a}{2}\ge ma^2+n\);\(\frac{1}{b}+\frac{3b}{2}\ge mb^2+n\);\(\frac{1}{c}+\frac{3c}{2}\ge mc^2+n\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=\frac{15}{2}\)

\(\Rightarrow m+n=\frac{5}{2}\Rightarrow n=\frac{5}{2}-m\)

Thay\(n=\frac{5}{2}-m\)vào (*), ta được: \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+\frac{5}{2}-m\)

\(\Leftrightarrow\frac{1}{x}+\frac{3x}{2}-\frac{5}{2}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{2x\left(x+1\right)}\ge m\left(x-1\right)\)

\(\Leftrightarrow m\le\frac{3x-2}{2x\left(x+1\right)}\)(**)

Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{4}\Rightarrow n=\frac{9}{4}\)

Như vậy, ta được BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)

GIẢI:

Ta có a,b,c là các số thực dương và \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a,b,c\le\sqrt{3}\)

Ta chứng minh BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)(với \(0< x\le\sqrt{3}\))

\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{4x}\ge0\)(Đúng với mọi \(0< x\le\sqrt{3}\))

Áp dụng ta được: \(\frac{1}{a}+\frac{3a}{2}\ge\frac{a^2+9}{4}\);\(\frac{1}{b}+\frac{3b}{2}\ge\frac{b^2+9}{4}\);\(\frac{1}{c}+\frac{3c}{2}\ge\frac{c^2+9}{4}\)

Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{\left(a^2+b^2+c^2\right)+9.3}{4}=\frac{15}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

1 tháng 6 2020

1) \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=\frac{1^2}{1}=1\)

2) \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

=> \(P\ge2018.1+\frac{1}{3}.\frac{1}{3}=2018\frac{1}{9}\)

Dấu "=" xảy ra <=> a = b = c = 1/3

Vậy GTNN của P = \(2018\frac{1}{9}\) tại a = b = c = 1/3

23 tháng 12 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\)

\(\ge\frac{\left(1+1+1\right)^2}{a+2b}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}}\)

\(>\frac{9}{\sqrt{3\cdot3c^2}}=\frac{9}{3c}=\frac{3}{c}=VP\)

13 tháng 5 2016

Ta có:

Vt = 1/a +1/b +1/b >= 9/(a+2b)

Mặt khác

(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2

=>(a+2b)<=3c

9/(a+2b)>=9/3c =3/c

=Vt >=3/c dpcm

Dấu "="xảy ra khi a=b=c =1

13 tháng 5 2016

Ta có:

Vt = 1/a +1/b +1/b >= 9/(a+2b)

Mặt khác

(a+2b)^2<=(1+2)(a^2 +2b^2) <=3*3c^2

=>(a+2b)<=3c

9/(a+2b)>=9/3c =3/c

=Vt >=3/c dpcm

Dấu "="xảy ra khi a=b=c =1

15 tháng 9 2017

Trong ba điều kiện cho trên thì ta có 1 số 1 còn 2 số kia =0 từ đó khẳng định a^2009+b^2009+c^2009=1

15 tháng 9 2017

Mình cần chứng minh ra nó gồm 1 số =1 và 2 số =0 mà bạn =)))))))