K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

1) \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=\frac{1^2}{1}=1\)

2) \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

=> \(P\ge2018.1+\frac{1}{3}.\frac{1}{3}=2018\frac{1}{9}\)

Dấu "=" xảy ra <=> a = b = c = 1/3

Vậy GTNN của P = \(2018\frac{1}{9}\) tại a = b = c = 1/3

28 tháng 2 2018

Xét : a^3/a^2+b^2

= (a^3+ab^2)/a^2+b^2 - ab^2/a^2+b^2

= a - ab^2/a^2+b^2

>= a - ab^2/2ab

  = a - b/2

Tương tự : b^3/b^2+c^2 >= b  - c/2 và c^3/c^2+a^2 >= c - a/2

=> P >= a+b+c-(a+b+c)/2 = a+b+c/2 = 3/2

Dấu "=" xảy ra <=> a=b=c=1

Vậy GTNN của P = 3/2 <=> a=b=c=1

Tk mk nha

7 tháng 11 2020

cho xin dấu = để làm cái :D lười tìm dấu = quá

24 tháng 11 2017

fkfkbang14

13 tháng 9 2021

Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\)  ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Mà \(a^2+b^2+c^2=3abc\)

=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)

=> \(a+b+c\ge3\)

Áp dụng bđt bunhia dạng phân thức ta có:

\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)

Đặt \(a+b+c=x\left(x\ge3\right)\)

=> \(M\ge\frac{x^2}{x+6}\)

Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)

<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)

<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)

=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)

=>\(MinM=1\)xảy ra khi a=b=c=1

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

4 tháng 5 2018

Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2

Theo Cauchy có: 

\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)

=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)

Hoặc:

P2= (a2+b2+c2)(b2+c2+a2

Theo Bunhiacopxki có:

P2= (a2+b2+c2)(b2+c2+a2\(\ge\)(ab+bc+ca)2=92

=> P\(\ge\)9  => Pmin=9

5 tháng 5 2018

Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)

\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)

\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)

Cộng từng vế của (1), (2) và (3) ta được: 

ab + bc + ca -2(a +b +c) + 3 \(\ge0\)

=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)

Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)

=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)

Vậy GTLN của P là 18 

Dâu "=" xảy ra khivà chỉ khi:

a =b=1, c=4 

hoặc: b=c=1, a=4

hoặc: c=a=1, b=4