K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

Trong ba điều kiện cho trên thì ta có 1 số 1 còn 2 số kia =0 từ đó khẳng định a^2009+b^2009+c^2009=1

15 tháng 9 2017

Mình cần chứng minh ra nó gồm 1 số =1 và 2 số =0 mà bạn =)))))))

25 tháng 9 2016

Ta có :

\(a+b+c=2009\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{1}{2009}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Rightarrow\frac{a+b}{ab}+\frac{\left(a+b+c\right)-c}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Rightarrow\left(a+b\right)\left(\frac{c^2+ab+bc+ca}{abc\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}a+b=0\\b+c=0\\c+a=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=2009\\b=2009\\c=2009\end{array}\right.\)

(+) a = 2009

=> P = 0

(+) b = 2009

=> P = 0

(+) c = 2009

=> P = 0

Vậy P = 0

26 tháng 9 2016

a+ b + c=2009 mà. Sao kết quả a=2009: b=2009 và c cùng = 2009

\(\left(a+b+c\right)^2=0\)

\(\Leftrightarrow2ab+2bc+2ac=-2009\)

\(\Leftrightarrow ab+bc+ac=-\dfrac{2009}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{4036081}{4}\)

\(\Leftrightarrow a^2b^2+a^2c^2+b^2c^2=\dfrac{4036081}{4}\)

\(a^2+b^2+c^2=2009\)

nên \(a^4+b^4+c^4+2\left(a^2b^2+a^2c^2+b^2c^2\right)=4036081\)

\(\Leftrightarrow a^4+b^4+c^4=\dfrac{4036081}{2}\)

NV
30 tháng 9 2020

Do \(\left\{{}\begin{matrix}a^{2008}\ge0\\b^{2008}\ge0\\c^{2008}\ge0\\a^{2008}+b^{2008}+c^{2008}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^{2008}\le1\\b^{2008}\le1\\c^{2008}\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{matrix}\right.\)

\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le a^{2008}+b^{2008}+c^{2008}\)

\(\Rightarrow a^{2009}+b^{2009}+c^{2009}\le1\)

Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

Khi đó \(a^{2007}+b^{2008}+c^{2009}+2020=1+2020=2021\)

22 tháng 10 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{b^2\left(a+1\right)}{1+b^2}\ge a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab}{2}-\frac{b}{2}\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc}{2}-\frac{c}{2};\frac{c+1}{1+a^2}\ge a+1-\frac{ac}{2}-\frac{a}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c+3-\frac{ab+bc+ca}{2}-\frac{a+b+c}{2}\)

\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}-\frac{3}{2}=3=VP\)

Khi \(a=b=c=1\)

17 tháng 2 2017

CHÚ Ý: BÀI TOÁN SAU: 

Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)

Trở lại với bài toán: chú ý: a-1+b-1+c-1=0

=> \(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3=3\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

Ta phải CM: (a-1)(b-1)(c-1)\(\ge\)\(-\frac{1}{4}\)

đặt: x=a-1, y=b-1, z=c-1

khi đó bài toán trở thành: x+y+z=0, CM xyz\(\ge-\frac{1}{4}\)

Ta có: -y=x+z => CM xz(x+z)\(\le\frac{1}{4}\)

Áp dung BĐT Cauchy và biến đổi đồng nhất

tương tự với -x và -z cộng lại ta được DPCM

29 tháng 8 2016

Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
                                        \(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .

29 tháng 8 2016

THEO MÌNH a = 1    b = 0    c = 0 hoặc là a = 0     b = 1    c = 0

\(\Rightarrow\)S = 1      mình đã rất mỏi tay nên ko diễn giải dc  

FC : ĐÃ RẤT CỐ GẮNG

1 tháng 6 2020

1) \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=\frac{1^2}{1}=1\)

2) \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

=> \(P\ge2018.1+\frac{1}{3}.\frac{1}{3}=2018\frac{1}{9}\)

Dấu "=" xảy ra <=> a = b = c = 1/3

Vậy GTNN của P = \(2018\frac{1}{9}\) tại a = b = c = 1/3