Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=a+\frac{1}{9a}+b+\frac{1}{9b}+c+\frac{1}{9c}+\frac{17}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\ge2\sqrt{a.\frac{1}{9a}}+2\sqrt{b.\frac{1}{9b}}+2\sqrt{c.\frac{1}{9c}}+\frac{17}{9}.\frac{9}{a+b+c}\)
\(\ge\frac{2}{3}+\frac{2}{3}+\frac{2}{3}+\frac{17}{1}\)
Ta có :
\(abc=\frac{1}{a+b+c}\)
\(\Rightarrow abc.\left(a+b+c\right)=1\)
Lai có : \(P=\left(a+b\right)\left(a+c\right)\)
\(=a^2+ab+bc+ac\)
\(=a.\left(a+b+c\right)+bc\)
Áp dụng BĐT AM - GM ta có :
P= \(a\left(a+b+c\right)+bc\ge2\sqrt{a.\left(a+b+c\right).bc}=2\sqrt{1}=2\)
Dấu " = " xảy ra \(\Leftrightarrow a.\left(a+b+c\right)=bc\)
Ta có:
\(\frac{1}{a+2}+\frac{3}{b+4}\le1-\frac{2}{c+3}\)
\(\Rightarrow1-\frac{1}{a+2}\ge\frac{3}{b+4}+\frac{2}{c+3}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\)
\(\Leftrightarrow\frac{a+1}{a+2}\ge2\sqrt{\frac{6}{\left(b+4\right)\left(c+3\right)}}\left(1\right)\)
Tương tự : \(1-\frac{3}{b+4}\ge\frac{1}{a+2}+\frac{2}{c+3}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\Leftrightarrow\frac{b+1}{b+4}\ge2\sqrt{\frac{2}{\left(a+2\right)\left(c+3\right)}}\left(2\right)\)
và \(\frac{c+1}{c+3}\ge2\sqrt{\frac{3}{\left(a+2\right)\left(b+4\right)}}\left(3\right)\)
Từ 1,2,3 ta có:
\(\frac{a+1}{a+2}.\frac{b+1}{b+4}.\frac{c+1}{c+3}\ge\frac{48}{\left(a+2\right)\left(b+4\right)\left(c+3\right)}\Leftrightarrow Q\ge48\)
Vậy Min Q =48 khi a=1,b=5,c=3
\(A\ge3\left(a+b+c\right)+\frac{9}{a+b+c}=3.3+\frac{9}{3}=12\)
\(A_{min}=12\) khi \(a=b=c=1\)
Ta cần chứng minh: \(3a+\frac{1}{a}\ge2a+2\Leftrightarrow3a+\frac{1}{a}-4\ge2\left(a-1\right)\)
\(\Leftrightarrow\frac{3a^2-4a+1}{a}-2\left(a-1\right)\ge0\Leftrightarrow\left(a-1\right)\left(\frac{3a-1}{a}-2\right)\ge0\Leftrightarrow\frac{\left(a-1\right)^2}{a}\)(đúng)
Tương tự: \(3b+\frac{1}{b}\ge2b+2;3c+\frac{1}{c}\ge2c+2\)
Cộng theo vế: \(A\ge2\left(a+b+c\right)+6=12\)
Dấu bằng xảy ra khi a=b=c=1