K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

Đặt \(\left\{\begin{matrix}a=\frac{1}{3x} & & \\ b=\frac{4}{5y} & & \\c=\frac{3}{2z} \end{matrix}\right.\)\((x,y,z>0)\)

Khi đó \(21a+2bc+8ca\leq12 \Leftrightarrow 3x+5y+7x \leq 15xyz\)

Áp dụng BĐT AM-GM ta có:

\(3x+5y+7z\geq 15\sqrt[15]{x^3y^5z^7}\)

\(\Rightarrow 15xyz\geq 15\sqrt[15]{x^3y^5z^7}=>x^6y^5z^4\geq 1\)

Ta có: \(P = 3x + 2.\dfrac{5}{4}y + 3.\dfrac{2}{3}z \)

\(= \dfrac{1}{2}(6x + 5y + 4z) \ge \dfrac{1}{2}.15\sqrt[{15}]{{{x^6}{y^5}{z^4}}} \ge \dfrac{{15}}{2}\)

Đẳng thức xảy ra khi \(x=y=z=1\) hay \(\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{4}{5}\\c=\dfrac{3}{2}\end{matrix}\right.\)

Đặt : \(x=\frac{1}{a};y=\frac{2}{b};z=\frac{3}{c}\)

Khi đó điều kiện bài toán thành : \(2xyz\ge2x+4y+7z\)

và \(E=x+y+z\)

\(\Rightarrow z\left(2xy-7\right)\ge2x+4y\)

\(\Leftrightarrow2xy>7\)và \(z\ge\frac{2x+4y}{2xy-7}\)

Ta có : \(\left(x+y+z\right)\ge x+y+\frac{2x+4y}{2xy-7}\)

           \(\Leftrightarrow\left(x+y+z\right)\ge x+\frac{11}{2x}+y-\frac{7}{2x}+\frac{2x+\frac{14}{x}}{2xy-7}\)

mà \(2\sqrt{1+\frac{7}{x^2}}\ge\frac{3+\frac{7}{x}}{2}\)

\(\Rightarrow x+y+z\ge\frac{3}{2}+x+\frac{9}{2}\ge\frac{15}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{3};b=\frac{4}{5};c=\frac{3}{2}\left(x=3;y=\frac{5}{2};z=2\right)\)

_Hắc phong_

Đặt \(x=\frac{1}{a};y=\frac{2}{b};z=\frac{3}{c}\)

Khi đó ta được điều kiện : \(2xyz\ge2x+4y+7z\)

Áp dụng bất ẳng thức AM-GM ta thấy rằng :

\(x+y+z=\frac{1}{15}.\left(\frac{5}{2}x+\frac{5}{2}x+....+\frac{5}{2}x+3y+3y+.....+3y+\frac{15}{4}z+\frac{15}{4}z+...+\frac{15}{4}z\right)\)

                                                (6 số \(\frac{5}{2}x\))                                                     (5 số\(3y\))                    (4 số\(\frac{15}{4}z\))

\(\ge\left(\frac{5x}{2}\right)^{\frac{2}{5}}\left(3y\right)^{\frac{1}{3}}\left(\frac{15z}{4}\right)^{\frac{4}{15}}\)

Và cũng có : 

\(2x+4x+7z=\frac{1}{15}\left(10x+...+10x+12y+...+12y+15z+..+15z\right)\)

                                                  (3 số\(10x\))                              (5 số\(12y\))                   (7 số\(15z\)

\(\ge10^{\frac{1}{5}}.12^{\frac{1}{3}}.15^{\frac{7}{15}}.x^{\frac{1}{5}}.y^{\frac{1}{3}}.z^{\frac{7}{15}}\)

Điều này có nghĩa là :

\(\left(x+y+z\right)^2\left(2x+4y+7z\right)\ge\frac{225}{2}xyz\)

\(2xyz\ge2x+4y+7z\)nên ta có :

\(\left(x+y+z\right)^2\ge\frac{225}{4}\Rightarrow x+y+z\ge\frac{15}{2}\)

Dấu"="xảy ra kh\(x=2;y=\frac{5}{2};=2\)

Từ đó suy ra

\(a=\frac{1}{3};b=\frac{4}{5};c=\frac{3}{2}\)

P/s : \(min_E=\frac{15}{2}\)

_Minh ngụy_

22 tháng 3 2016

kq=7,5 ban a 

20 tháng 3 2016

\(2x+8y+21z\leq 12xyz\Rightarrow 3z\geq \frac{2x+8y}{4xy-7}\Rightarrow P\geq x+2y+\frac{2x+8y}{4xy-7}=x+\frac{11}{2x}+\frac{1}{2x}\left [ (4xy-7)+\frac{4x^{2}+28}{4xy-7} \right ]\geq x+\frac{11}{2x}+\frac{1}{x}\sqrt{4x^{2}+28}=x+\frac{11}{2x}+\frac{3}{2}\sqrt{\left ( 1+\frac{7}{9} \right )\left ( 1+\frac{7}{x^{2}} \right )}\geq x+\frac{11}{2x}+\frac{3}{2}\left ( 1+\frac{7}{3x} \right )=x+\frac{9}{x}+\frac{3}{2}\geq 6+\frac{3}{2}=\frac{15}{2}\)

27 tháng 11 2019

Cách : AM - GM :

\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)

Áp dụng BĐT AM - GM :

\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)

\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)

\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)