Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.
ĐKXĐ: \(0\le x\le1\)
\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)
\(P\ge\sqrt{1-x+x}+\sqrt{1+x+x}=1+\sqrt{1+2x}\ge2\)
\(\Rightarrow P_{min}=2\) khi \(x=0\)
6.
\(3=a^2+b^2+ab\ge2ab+ab=3ab\Rightarrow ab\le1\)
\(3=a^2+b^2+ab\ge-2ab+ab=-ab\Rightarrow ab\ge-3\)
\(\Rightarrow-3\le ab\le1\)
\(a^2+b^2+ab=3\Rightarrow a^2+b^2=3-ab\)
Ta có:
\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab\)
\(P=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)
Đặt \(ab=x\Rightarrow-3\le x\le1\)
\(P=-x^2-7x+9=21-\left(x+3\right)\left(x+4\right)\le21\)
\(\Rightarrow P_{max}=21\) khi \(x=-3\) hay \(\left(a;b\right)=\left(-\sqrt{3};\sqrt{3}\right)\) và hoán vị
\(P=-x^2-7x+9=1+\left(1-x\right)\left(x+8\right)\ge1\)
\(\Rightarrow P_{min}=1\) khi \(x=1\) hay \(a=b=1\)
1. \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)
\(\Leftrightarrow x+y+z+\frac{1}{3}\left(x+y+z\right)^2\ge6\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
\(\Leftrightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)
\(\Leftrightarrow x+y+z\ge3\)
Vậy \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge\frac{1}{3}.3^2=3\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
2. Áp dụng BĐT Bunhiacopxki:
\(Q^2\le3\left(2a+bc+2b+ac+2c+ab\right)\)
\(Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)
\(Q^2\le6\left(a+b+c\right)+\left(a+b+c\right)^2=16\)
\(\Rightarrow Q\le4\Rightarrow Q_{max}=4\) khi \(a=b=c=\frac{2}{3}\)
Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)
Vậy P min = 1 <=> a=b=c=1/căn(3)
^^
ta có a^2+b^2+c^2=1
Mà a,b,c thuộc N
\(\Rightarrow\)TH1:a và b =0
TH2:b và c=0
TH3:c và a=0
nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu
Do đó không có P
\(B=\frac{a+b}{ab}+\frac{2}{a+b}=\frac{a+b}{2ab}+\frac{a+b}{2ab}+\frac{2}{a+b}\)
\(B\ge\frac{2\sqrt{ab}}{2ab}+2\sqrt{\frac{2\left(a+b\right)}{2ab\left(a+b\right)}}=3\)
\(B_{min}=3\) khi \(a=b=1\)
Câu b thì đề chắc phải cho a;b;c là 3 cạnh của 1 tam giác để đảm bảo các mẫu thức dương chứ?
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
\(T=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}\)
\(T=\frac{2y}{x}+\frac{2z}{x}+\frac{9x}{2y}+\frac{9z}{2y}+\frac{8x}{z}+\frac{8y}{z}\)
\(T=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{8y}{z}+\frac{9z}{2y}\)
\(T\ge2\sqrt{\frac{18xy}{2xy}}+2\sqrt{\frac{16xz}{xz}}+2\sqrt{\frac{72yz}{2yz}}=26\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)
Các biến không có biên, mà cực trị xảy ra tại tâm là max nên biểu thức này ko có min, bạn ko cần nghĩ cách tìm nó đâu
\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ba}+\frac{c^2}{ac+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
dấu "=" xảy ra tại a=b=c
Cách 2
\(P+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\left(a+b+c\right)\cdot\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)
\(\Rightarrow P\ge\frac{3}{2}\Leftrightarrow a=b=c\)
\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\left(1\right)\)
Đặt \(\hept{\begin{cases}b+c=x\\c+a=y\\a+b=z\end{cases}\left(x,y,z>0\right)}\)
\(\Rightarrow a=\frac{y+z-x}{2}\);\(b=\frac{z+x-y}{2}\);\(c=\frac{x+y-z}{2}\)
\(\left(1\right)\)trở thành \(\frac{y+z-x}{2x}+\frac{z+x-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}+\frac{z}{2y}+\frac{x}{2y}-\frac{1}{2}+\frac{x}{2z}+\frac{y}{2z}-\frac{1}{2}\ge\frac{3}{2}\)
\(\Leftrightarrow\left(\frac{y}{2x}+\frac{x}{2y}\right)+\left(\frac{z}{2x}+\frac{x}{2z}\right)+\left(\frac{z}{2y}+\frac{y}{2z}\right)\ge3\)
Vì \(\frac{y}{2x}+\frac{x}{2y}\ge2\sqrt{\frac{y}{2x}.\frac{x}{2y}}=1\)( bđt AM-GM)
CMTT \(\frac{z}{2x}+\frac{x}{2z}\ge1\)và \(\frac{z}{2y}+\frac{y}{2z}\ge1\)
rồi cộng vào là xong
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{y}{2x}=\frac{x}{2y}\\\frac{z}{2x}=\frac{x}{2z}\\\frac{z}{2y}=\frac{y}{2z}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x^2=2y^2\\2z^2=2x^2\\2y^2=2z^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=y\\z=x\\y=z\end{cases}\Leftrightarrow}x=y=z\)
Vậy \(P_{min}=\frac{3}{2}\Leftrightarrow x=y=z\)
\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)
\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)
Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)
\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2
\(S=\left(a^2+\frac{1}{4}\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+\frac{1}{4}\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
\(\ge a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{4}=\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)-\frac{3}{4}\)
\(\ge1+1+1-\frac{3}{4}=\frac{9}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{2}\)
à quên tách ra mà quên đoạn sau :v thêm vào tí nhé
\(S\ge\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
\(\ge2\sqrt{\frac{a}{4a}}+2\sqrt{\frac{b}{4b}}+2\sqrt{\frac{c}{4c}}+\frac{3}{4}.\frac{9}{a+b+c}-\frac{3}{4}\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}-\frac{3}{4}=\frac{27}{4}\)