K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

\(S=\left(a^2+\frac{1}{4}\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+\frac{1}{4}\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{4}=\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)-\frac{3}{4}\)

\(\ge1+1+1-\frac{3}{4}=\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{2}\)

22 tháng 7 2019

à quên tách ra mà quên đoạn sau :v thêm vào tí nhé 

\(S\ge\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge2\sqrt{\frac{a}{4a}}+2\sqrt{\frac{b}{4b}}+2\sqrt{\frac{c}{4c}}+\frac{3}{4}.\frac{9}{a+b+c}-\frac{3}{4}\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}-\frac{3}{4}=\frac{27}{4}\)

1 tháng 3 2018

Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)

Vậy P min = 1 <=> a=b=c=1/căn(3)

^^

1 tháng 3 2018

ta có a^2+b^2+c^2=1

Mà a,b,c thuộc N

\(\Rightarrow\)TH1:a và b =0

TH2:b và c=0

TH3:c và a=0

nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu

Do đó không có P

31 tháng 10 2018

Áp dụng BĐT  AM-GM ta có :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

\(=\frac{9}{abc\left(a+b+c\right)}\ge\frac{27}{\left(ab+bc+ca\right)^2}\)

Mặt khác theo BĐT  AM-GM  có :

\(\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\le\left(\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)^3}{3}\right)=27\)

\(\Rightarrow\frac{27}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

Đặt  \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)

Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{81}{9}.3=\frac{10}{3}\)

Vậy \(MinP=\frac{10}{3}\Leftrightarrow a=b=c=-1\)

31 tháng 10 2018

Sửa lại chút  , vội quá nên đánh lỗi .

Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{8t}{9}\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}.3=\frac{10}{3}\)

\(\Rightarrow MinP=\frac{10}{3}\Leftrightarrow a=b=c=1\)

30 tháng 8 2021

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

31 tháng 8 2021

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.

18 tháng 5 2017

đặt x = a; y = b/2; z = c/3. khi đó ta có \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\le1.\)

quy đồng, nhân chéo ta được (1+x)(1+y) + (1+y)(1+z) + (1+z)(1+x) \(\le\)(1+x)(1+y)(1+z).

nhân phá ngoặc, rút gọn ta được x + y + z + 2 \(\le\)xyz. (1)

mặt khác ta có \(1\ge\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{9}{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}\ge\frac{9}{x+y+z+3}\)

nên x+ y + z \(\ge\)6 (2)

từ (1) và (2) suy ra xyz \(\ge\)8 hay S = abc \(\ge\)48.

dấu bằng xảy ra khi x = y = z = 2 hay a = 2; b = 4; c = 6.

vậy Min S = 48.

19 tháng 5 2017

hình như cái BĐT ở dưới chỗ "Mặc khác ta có" sai

26 tháng 8 2020

Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2

Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)

\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)

Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)

Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)

\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)

\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)

Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)

Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có 

\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)

Lập bảng biến thiên ta có min[2;\(+\infty\)\(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)

Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2

26 tháng 8 2020

Đặt a=xc; b=cy (x;y >=1)

  • Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)
  • Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)
  • Xét x,y>1 thay vào giả thiết ta có

\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)

\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)

Biểu thức P được viết lại như sau

\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)

\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)

Đặt t=xy với t>=4

Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)

Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)

Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)

Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c

NV
21 tháng 10 2019

\(B=\frac{a+b}{ab}+\frac{2}{a+b}=\frac{a+b}{2ab}+\frac{a+b}{2ab}+\frac{2}{a+b}\)

\(B\ge\frac{2\sqrt{ab}}{2ab}+2\sqrt{\frac{2\left(a+b\right)}{2ab\left(a+b\right)}}=3\)

\(B_{min}=3\) khi \(a=b=1\)

Câu b thì đề chắc phải cho a;b;c là 3 cạnh của 1 tam giác để đảm bảo các mẫu thức dương chứ?

Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

\(T=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}\)

\(T=\frac{2y}{x}+\frac{2z}{x}+\frac{9x}{2y}+\frac{9z}{2y}+\frac{8x}{z}+\frac{8y}{z}\)

\(T=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{8y}{z}+\frac{9z}{2y}\)

\(T\ge2\sqrt{\frac{18xy}{2xy}}+2\sqrt{\frac{16xz}{xz}}+2\sqrt{\frac{72yz}{2yz}}=26\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)

21 tháng 10 2019

Nguyễn Việt Lâm mà