K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2018

Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)

Vậy P min = 1 <=> a=b=c=1/căn(3)

^^

1 tháng 3 2018

ta có a^2+b^2+c^2=1

Mà a,b,c thuộc N

\(\Rightarrow\)TH1:a và b =0

TH2:b và c=0

TH3:c và a=0

nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu

Do đó không có P

23 tháng 1 2021

\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)

\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)

\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2

31 tháng 10 2018

Áp dụng BĐT  AM-GM ta có :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

\(=\frac{9}{abc\left(a+b+c\right)}\ge\frac{27}{\left(ab+bc+ca\right)^2}\)

Mặt khác theo BĐT  AM-GM  có :

\(\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\le\left(\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)^3}{3}\right)=27\)

\(\Rightarrow\frac{27}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

Đặt  \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)

Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{81}{9}.3=\frac{10}{3}\)

Vậy \(MinP=\frac{10}{3}\Leftrightarrow a=b=c=-1\)

31 tháng 10 2018

Sửa lại chút  , vội quá nên đánh lỗi .

Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{8t}{9}\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}.3=\frac{10}{3}\)

\(\Rightarrow MinP=\frac{10}{3}\Leftrightarrow a=b=c=1\)

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

26 tháng 12 2015

\(P=\frac{a^4}{a\sqrt{b^2+3}}+\frac{b^4}{b\sqrt{a^2+3}}+\frac{c^4}{c\sqrt{a^2+3}}\)

   \(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\sqrt{b^2+3}+b\sqrt{a^2+3}+c\sqrt{a^2+3}}\)

Ta co : \(2a\sqrt{b^2+3}+2b\sqrt{c^2+3}+2c\sqrt{a^2+3}\le\frac{4a^2+b^2+3}{2}+\frac{4b^2+a^2+3}{2}+\frac{4a^2+c^2+3}{2}\)

   => \(2\left(a\sqrt{b^2+3}+b\sqrt{c^2+3}+c\sqrt{a^2+3}\right)\le\frac{5\left(a^2+b^2+c^2\right)+9}{2}\)  = \(\frac{5.3+9}{2}=12\)       

=> \(a\sqrt{b^2+3}+b\sqrt{c^2+3}+c\sqrt{a^2+3}\le6\)                               

=> \(P\ge\frac{\left(a^2+b^2+c^2\right)^2}{6}=\frac{9}{6}=\frac{3}{2}\)                           

Dấu '' = '' xảy ra khi và chỉ khi : \(\frac{a^2}{\sqrt{b^2+3}}=\frac{b^2}{\sqrt{c^2+3}}=\frac{c^2}{\sqrt{a^2+3}}\) 

                                              \(2a=\sqrt{b^2+3};2b=\sqrt{c^2+3};2c=\sqrt{a^2+3}\)

                                               \(a^2+b^2+c^2=3\)

=> a = b= c = 1

 

9 tháng 12 2017

áp dụng bđt phụ

\(x^2+y^2+z^2>=xy+xz+yz\)

ta đượcp>=12

12 tháng 12 2017

nham. thuc ra

áp dụng bdt cô si ta có

\(\frac{a^4}{b\left(c+a\right)^2}+b>=\frac{a^2}{c+a}\)

cm tương tự 

do do P+a+b+c>=\(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\)

áp dụng bất đẳng thức bunhiacopxki ta có

\(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}>=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{12}{2}=6\)

=>P>=-6

dau = xay ra<=>

\(\hept{\begin{cases}\frac{a^4}{b\left(c+a\right)^2}=b\\\frac{b^4}{c\left(a+b\right)^2}=c\end{cases}}va\hept{\begin{cases}\frac{c^4}{a\left(b+c\right)^2}=c\\\frac{\left(c+a\right)^2}{a^2}=\frac{\left(a+b\right)^2}{b^2}=\frac{\left(b+c\right)^2}{c^2}\\a+b+c=12\end{cases}}\)

<=>a=b=c=4(tm)

10 tháng 2 2020

Ở đây ít người lớp 9 lắm

10 tháng 2 2020

Từ đề bài suy ra \(0< a,b,c< \sqrt{3}\). Khi đó:  \(M-9=\Sigma_{cyc}\frac{\left(2-a\right)\left(a-1\right)^2}{2a}\ge0\)

25 tháng 4 2020

Áp dụng bất đẳng thức Cô - si cho 2 số không âm, ta có:

\(\frac{a^2+6a+3}{a^2+a}=\frac{\left(3a^2+3\right)+6a-2a^2}{a^2+a}\ge\frac{6a+6a-2a^2}{a^2+a}\)

\(=\frac{12a-2a^2}{a^2+a}=\frac{14}{a+1}-2\)

Tương tự ta có: \(\frac{b^2+6b+3}{b^2+b}\ge\frac{14}{b+1}-2\);\(\frac{c^2+6c+3}{c^2+c}\ge\frac{14}{c+1}-2\)

Cộng từng vế của 3 bất đẳng thức trên và sử dụng BĐT Bunhiacopxki dạng phân thức, ta được: 

\(A\ge14\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)-6\ge14.\frac{9}{a+b+c+3}-6\)

\(\ge14.\frac{9}{3+3}-6=15\)

Đẳng thức xảy ra khi a = b = c = 1

7 tháng 6 2020

Cách 2, dùng UCT xét BĐT phụ

Xét BĐT phụ: \(\frac{x^2+6x+3}{x^2+x}\ge\frac{-7}{2}x+\frac{17}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(7x+6\right)\left(x-1\right)^2}{2\left(x^2+x\right)}\ge0\)(Đúng với mọi x dương)

Áp dụng, ta được: \(A=\frac{a^2+6a+3}{a^2+a}+\frac{b^2+6b+3}{b^2+b}+\frac{c^2+6c+3}{c^2+c}\)\(\ge\frac{-7}{2}\left(a+b+c\right)+\frac{17}{2}.3=\ge\frac{-7}{2}.3+\frac{51}{2}=15\)

Đẳng thức xảy ra khi a = b = c = 1