Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBAD có BA=BD và góc B=60 độ
nên ΔBAD đều
b: góc CAD=90-60=30 độ=góc C
=>ΔDAC cân tại D
A B C D H
Cm: a) Ta có: BA = BD => t/giác ABD là t/giác cân tại B
=> góc BAD = góc ADB = (1800 - góc B)/2 = (1800 - 600)/2 = 1200/2 = 600
Do góc B = góc BAD = góc ADB = 600
=> T/giác ABD là t/giác đều
b) Xét t/giác ABH và t/giác ADH
có AB = AC (vì t/giác ABD là t/giác đều)
BH = DH (gt)
AH : chung
=> t/giác ABH = t/giác ADH (c.c.c)
=> góc AHB = góc AHD (hai góc tương ứng)
Mà góc AHB + góc AHD = 1800 (kề bù)
hay 2. góc AHB = 1800
=> góc AHB = 1800 : 2 = 900
=> AH \(\perp\)BD
c) Ta có: T/giác ABD là t/giác đều => AB = AD = BD
Mà BH = HD = BD/2 = 2/2 = 1
Xét t/giác ABH vuông tại H(áp dụng định lí Pi-ta-go)
Ta có: AB2 = AH2 + BH2
=> AH2 = AB2 - BH2 = 22 - 12 = 4 - 1 = 3
Ta lại có: BH + HC = BC
=> HC = BC - BH = 5 - 1 = 4
Xét t/giác AHC vuông tại H (áp dụng định lí Pi - ta - go)
Ta có: AC2 = AH2 + HC2 = 3 + 42 = 3 + 16 = 19
=> AC = \(\sqrt{19}\)
d) Xét t/giác ABC
Ta có: AB2 + AC2 = 22 + \(\sqrt{19}^2\)= 4 + 19 = 23
BC2 = 52 = 25
=> AB2 + AC2 \(\ne\) BC2
=> t/giác ABC ko phải là t/giác vuông
=> góc BAC < 900 (vì 23 < 25)
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ và DA=DE
c: DA=DE
DE<DC
=>DA<DC
a) Xét \(\Delta ABD\)&\(\Delta EBD\)có:
BE = AB ( theo đầu bài)
\(\widehat{ABD}=\widehat{EBD}\)(vì BD là phân giác của góc ABC)
BD chung
=> \(\Delta ABD=\Delta EBD\)(c.g.c)
=> DA= DE ( 2 cạnh tương ứng )
Ta có: \(\widehat{BDA}+\widehat{BDA}=90^o\)(trong tam giác vuong 2 góc nhọn phụ nhau)
=>\(\widehat{BDA}< \widehat{BAD}\)(1)
Và có : \(\widehat{BDC}>\widehat{BAD}\)(tính chất góc ngoài của tam giác)(2)
Từ (1) vs (2) =>\(\widehat{BDC}>\widehat{BDA}\)
Mà:\(\widehat{BDA}=\widehat{BDE}\)
=>\(\widehat{BDC}>\widehat{BDE}\)
a) Xét tam giác ABD có AB = AD nên ABD là tam giác cân. Lại có góc \(\widehat{ABD}=60^o\) nên tam giác ABD là tam giác đều.
b) Do BI là phân giác góc ABC mà \(\widehat{ABC}=60^o\Rightarrow\widehat{IBC}=30^o\)
Lại có \(\widehat{ICB}=\widehat{ACB}=90^o-\widehat{ABC}=30^o\)
Xét tam giác IBC có IB = IC nên tam giác IBC cân tại I.
c) Xét tam giác IDB và tam giác IAB có:
IB chung
AB = DB (gt)
\(\widehat{DBI}=\widehat{ABI}\) (gt)
\(\Rightarrow\Delta IDB=\Delta IAB\left(c-g-c\right)\)
\(\Rightarrow\widehat{IDB}=\widehat{IAB}=90^o\) hay ID là đường cao tam giác IBC.
Lại có tam giác IBC cân tại I nên ID đồng thời là đường trung tuyến.
Vậy nên D là trung điểm BC.
d) Do AB = 6cm nên DB = AB = 6cm
Vậy thì BC = 2DB = 2.6 = 12cm
Do tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go ta có:
\(AC^2+AB^2=BC^2\Rightarrow AC^2+6^2=12^2\Rightarrow AC=\sqrt{108}\left(cm\right)\)
Bài giải :
a) Xét tam giác ABD có AB = AD nên ABD là tam giác cân. Lại có góc ^ABD=60o nên tam giác ABD là tam giác đều.
b) Do BI là phân giác góc ABC mà ^ABC=60o⇒^IBC=30o
Lại có ^ICB=^ACB=90o−^ABC=30o
Xét tam giác IBC có IB = IC nên tam giác IBC cân tại I.
c) Xét tam giác IDB và tam giác IAB có:
IB chung
AB = DB (gt)
^DBI=^ABI (gt)
⇒ΔIDB=ΔIAB(c−g−c)
⇒^IDB=^IAB=90o hay ID là đường cao tam giác IBC.
Lại có tam giác IBC cân tại I nên ID đồng thời là đường trung tuyến.
Vậy nên D là trung điểm BC.
d) Do AB = 6cm nên DB = AB = 6cm
Vậy thì BC = 2DB = 2.6 = 12cm
Do tam giác ABC vuông tại A, áp dụng định lý Pi-ta-go ta có:
AC2+AB2=BC2⇒AC2+62=122⇒AC=√108(cm)
đề bài sai bn ơi sao góc A lại nhỏ hơn góc A
a,c: SỬa đề. gó A<góc C
Vì góc A<góc C
mà góc A+góc C=120 độ
nên góc A<góc B<góc C
=>AB>BC
b: Xét ΔBAD có BA=BD và góc ABD=60 độ
nên ΔBAD đều