Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB=8cm
b: xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
BA=BD
Do đó: ΔABE=ΔDBE
a, áp dụng định lí py-ta-go ta có:
\(BC^2\)=\(AB^2+AC^2\)
=> \(AC^2=BC^2-AB^2\)
=> \(AC^2=100-36\)
=> \(AC^2=64\)cm => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>t.giác BCD cân tại C (đpcm)
c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M
=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)
=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm
vậy MC\(\approx\)5,3 cm
a) Xét \(\Delta ABD\)&\(\Delta EBD\)có:
BE = AB ( theo đầu bài)
\(\widehat{ABD}=\widehat{EBD}\)(vì BD là phân giác của góc ABC)
BD chung
=> \(\Delta ABD=\Delta EBD\)(c.g.c)
=> DA= DE ( 2 cạnh tương ứng )
Ta có: \(\widehat{BDA}+\widehat{BDA}=90^o\)(trong tam giác vuong 2 góc nhọn phụ nhau)
=>\(\widehat{BDA}< \widehat{BAD}\)(1)
Và có : \(\widehat{BDC}>\widehat{BAD}\)(tính chất góc ngoài của tam giác)(2)
Từ (1) vs (2) =>\(\widehat{BDC}>\widehat{BDA}\)
Mà:\(\widehat{BDA}=\widehat{BDE}\)
=>\(\widehat{BDC}>\widehat{BDE}\)