Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)&\(\Delta EBD\)có:
BE = AB ( theo đầu bài)
\(\widehat{ABD}=\widehat{EBD}\)(vì BD là phân giác của góc ABC)
BD chung
=> \(\Delta ABD=\Delta EBD\)(c.g.c)
=> DA= DE ( 2 cạnh tương ứng )
Ta có: \(\widehat{BDA}+\widehat{BDA}=90^o\)(trong tam giác vuong 2 góc nhọn phụ nhau)
=>\(\widehat{BDA}< \widehat{BAD}\)(1)
Và có : \(\widehat{BDC}>\widehat{BAD}\)(tính chất góc ngoài của tam giác)(2)
Từ (1) vs (2) =>\(\widehat{BDC}>\widehat{BDA}\)
Mà:\(\widehat{BDA}=\widehat{BDE}\)
=>\(\widehat{BDC}>\widehat{BDE}\)
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
a) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)
Câu b có sai đề ko bạn?