Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2.4=17\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=5^3-3.4.5=65\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2.a^2b^2=17^2-2.4^2=257\)
=> \(a^7+b^7=\left(a^3+b^3\right)\left(a^4+b^4\right)-a^3b^3\left(a+b\right)=65.257-4^3.5=16385\)
a) Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
Thay \(ab=40\) và \(a+b=-6\) vào biểu thức ta có
\(\left(-6\right)^3-3\cdot7\cdot\left(-6\right)=-90\)
b) Ta có: \(a^3-b^3\)
\(=\left(a-b\right)^3+3ab\left(a-b\right)\)
Thay \(ab=40\) và \(a-b=3\) vào biểu thức ta có:
\(3^3+3\cdot40\cdot3=387\)
a: a^3+b^3=(a+b)^3-3ab(a+b)
=(-6)^3-3*7*(-6)
=-90
b: a^3-b^3=(a-b)^3+3ab(a-b)
=3^3+3*40*3
=387
1) ( a - b )2 = a2 - 2ab + b2 = a2 + 2ab + b2 - 4ab = ( a + b )2 - 4ab
= 72 - 4.5 = 49 - 20 = 29
2) ( a + b )2 = a2 + 2ab + b2 = a2 - 2ab + b2 + 4ab = ( a - b )2 + 4ab
= 52 + 4.3 = 25 + 12 = 37
\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)
\(\Rightarrow a-b=-1\)
\(\Rightarrow A=\left(-1\right)^5=?\)
\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
a)\(a+b=-5\)
\(\Rightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+2ab+b^2=25\)
\(\Leftrightarrow a^2+12+b^2=25\)
\(\Leftrightarrow a^2+b^2=13\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=-5\left(13-6\right)=-35\)
Áp dụng HDT mũ 7 nhưng trước cần tính:
\(ab=3\Rightarrow\hept{\begin{cases}a^2b^2=9\\a^3b^3=27\end{cases}}\)
\(\left(a+b\right)=5\Rightarrow\left(a+b\right)^3=125\Rightarrow a^3+b^3+3ab\left(a+b\right)=125\Rightarrow a^3+b^3=125-3.3.5=80\)
do ab=3,a+b=5
Mặt khác :
\(a+b=5\Rightarrow\left(a+b\right)^5=a^5+b^5+5ab\left(a^3+b^3\right)+10a^2b^2\left(a+b\right)=3125\Rightarrow a^5+b^5=3125-5.3.80+10.9.5=1475\)
Áp dụng hằng đẳng thức Mũ 7
\(a+b=5\Rightarrow a^7+b^7+7ab\left(a^5+b^5\right)+21a^2b^2\left(a^3+b^3\right)+35a^3b^3\left(a+b\right)=78125\)
Mà \(a^5+b^5=1475,a^3+b^3=80,a+b=5,ab=3,a^2b^2=9,a^3b^3=27\)
\(\Rightarrow a^7+b^7+7.3.1475+21.9.80+35.27.5=78125\Rightarrow a^7+b^7=78125-52980=25145\)
Chúc bạn học tốt
T I C K nha