K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^2+2017b^2}{c^2+2017d^2}=\dfrac{b^2k^2+2017b^2}{d^2k^2+2017d^2}=\dfrac{b^2}{d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2+2017b^2}{c^2+2017d^2}=\dfrac{ab}{cd}\)

1 tháng 3 2015

Hoặc 

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

 

a2

13 tháng 3 2015

Bạn Trần Thùy Dung ơi làm sai ùi cách 1 làm sai ùi:

đây là phép cộng không phải phép nhân

 

6 tháng 8 2019

Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left[a+b\right]^2}{\left[c+d\right]^2}=\left[\frac{a+b}{c+d}\right]^2(1)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left[a-b\right]^2}{\left[c-d\right]^2}=\left[\frac{a-b}{c-d}\right]^2(2)\)

Từ 1 và 2 suy ra : \(\left[\frac{a+b}{c+d}\right]^2=\left[\frac{a-b}{c-d}\right]^2\)

Trường hợp 1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}(3)\)

.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}(4)\)

Từ 3 và 4 suy ra \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\).

Câu hỏi của Doãn Thị Thu Trang - Toán lớp 7 - Học toán với OnlineMath

6 tháng 10 2019

Bài 1:

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right).\)

Mình làm được thế thôi nhé.

Chúc bạn học tốt!