K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Bài 1:

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)

\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)

\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right).\)

Mình làm được thế thôi nhé.

Chúc bạn học tốt!

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+3\cdot bk\cdot b}{11\cdot b^2\cdot k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Do đó: VT=VP(đpcm)

 

5 tháng 10 2019

B1: Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{a+b}{a+b+2c+2d}=\frac{1}{3}\)

\(\Rightarrow\frac{a+b+2c+2d}{a+b}=3\)\(\Rightarrow1+\frac{2\left(c+d\right)}{a+b}=3\)\(\Rightarrow\frac{2\left(c+d\right)}{a+b}=2\)\(\Rightarrow\frac{c+d}{a+b}=1\)(1)

Lại có: \(\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{b+c}{b+c+2\left(a+d\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{b+c+2\left(a+d\right)}{b+c}=3\)\(\Rightarrow1+\frac{2\left(a+d\right)}{b+c}=3\)\(\Rightarrow\frac{2\left(a+d\right)}{b+c}=2\)\(\Rightarrow\frac{a+d}{b+c}=1\)(2)

Ta có: \(\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{c+d}{c+d+2\left(a+b\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{2\left(a+b\right)+c+d}{c+d}=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}+1=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}=2\)\(\Rightarrow\frac{a+b}{c+d}=1\)(3)

Lại có: \(\frac{a}{b+c+d}=\frac{d}{a+b+c}=\frac{a+d}{a+d+2\left(b+c\right)}=\frac{1}{3}\)

\(\Rightarrow\frac{2\left(c+b\right)+a+d}{a+d}=3\)\(\Rightarrow\frac{2\left(c+b\right)}{a+d}+1=3\)\(\Rightarrow\frac{2\left(b+c\right)}{a+d}=2\)\(\Rightarrow\frac{b+c}{a+d}=1\)(4)

Từ (1) , (2) , (3) , (4)

\(\Rightarrow P=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)

5 tháng 10 2019

B2: a, Vì (x4 + 3)2 ≥ 0

Dấu " = " xảy ra <=> x4 + 3 = 0

                          <=> x4 = 3

                          <=> x = 4√3

Vậy GTNN A = 0 khi x = 4√3

b, Vì |0,5 + x| ≥ 0 ; (y - 1,3)4 ≥ 0 

=> |0,5 + x| + (y - 1,3)4 ≥ 0

=> |0,5 + x| + (y - 1,3)4 + 20 ≥ 20

Dấu " = " xảy ra <=> \(\hept{\begin{cases}0,5+x=0\\y-1,3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-0,5\\y=1,3\end{cases}}\)

Vậy GTNN V = 20 khi x = -0,5 và y = 1,3

c, Ta có: \(C=\frac{5x-19}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)

C đạt GTNN <=> \(\frac{1}{x-4}\)đạt GTNN <=> x - 4 đạt GTLN

<=> x > 4 , x nguyên dương

Vậy C có GTNN <=> x > 4 , x nguyên dương

(Ko chắc)

( t tham khảo 1 số bài khác thì ng` ta giải x = 3 thì C có GTNN = 4 )

Bài 3:

a, Để N có GTLN <=> 2(x - 2014)2 + 3 có GTNN

Vì (x - 2014)2 ≥ 0 => 2(x - 2014)2 ≥ 0

=> 2(x - 2014)2 + 3 ≥ 3

\(\Rightarrow\frac{1}{2\left(x-2014\right)^2+3}\le\frac{1}{3}\)

Dấu " = " xảy ra <=> x - 2014 = 0

                          <=> x = 2014

Vậy GTLN N = 1/3 khi x = 2014

b, Ta có: \(P=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)

Để P có GTLN <=> \(\frac{3}{12-x}\)có GTLN <=> 12 - x có GTNN ( (12 - x) ∈ N ; 12 - x ≠ 0)

                                                                   <=> 12 - x = 1

                                                                   <=> x = 11

\(\Rightarrow P=2+\frac{3}{12-x}=2+3=5\)

18 tháng 12 2016

a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(T/C...)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

b)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(T/C...)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)

18 tháng 12 2016

c)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)

\(\Rightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)

\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

Đọc lại lý thuyết Bài 8 sgk/28

chỉ cần có lý thuyết a=k.b và c=k.d thay vào biểu thức là xong

8 tháng 11 2017

      Đặt \(\frac{a}{b}=\frac{c}{d}\)= k

\(\Rightarrow\)a=bk , c = dk

Ta có:

  • \(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b\left(k-1\right)}{b\left(k+1\right)}=\frac{k-1}{k+1}\) (1)

  \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d\left(k-1\right)}{d\left(k+1\right)}=\frac{k-1}{k+1}\)(2)

Từ (1) và (2) suy ra \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

vậy \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

8 tháng 11 2017

nhớ giải chi tiết giúp mình nhé ai nhanh và đúng nhất mình sẽ tích cho

16 tháng 11 2017

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

\(=\frac{11a^2}{11c^2}=\frac{7a^2}{7c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)

\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

17 tháng 8 2019

Ta có: a/b=c/d => a2/d2=>a2/c2=b2/d2=ab/cd

=11a2/11c2=7a2/7c2=8b2/8d2=3ab/3cd=7a2+3ab/7c2+3cd=11a2-8b2/11c2-8d2

=>7a2+3ab/11a2-8b2=7c2+3cd/11c2-8d2