K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

Áp dụng BĐT Schwarz:

\(1=\dfrac{4}{a}+\dfrac{9}{b}\ge\dfrac{\left(2+3\right)^2}{a+b}=\dfrac{25}{P}\)

\(\Rightarrow P\ge25\)

\(\Rightarrow minP=25\Leftrightarrow\left\{{}\begin{matrix}a=10\\b=15\end{matrix}\right.\)

14 tháng 5 2021

DEO AI BT DAU A.Zay nen tu lam nha.

15 tháng 5 2016

Toán lớp 9

NV
10 tháng 8 2021

\(A=a^3b^3+\dfrac{1}{a^3b^3}+2=a^3b^3+\dfrac{1}{2^{12}.a^3b^3}+\dfrac{2^{12}-1}{2^{12}a^3b^3}+2\)

\(A\ge2\sqrt{\dfrac{a^3b^3}{2^{12}.a^3b^3}}+\dfrac{2^{12}-1}{2^{12}.\left(\dfrac{a+b}{2}\right)^6}+2=\dfrac{2}{2^6}+\dfrac{2^{12}-1}{2^6}+2=\dfrac{2^{12}+1}{2^6}+2\) (casio)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

21 tháng 10 2016

\(A=a^6+b^6=\left(a^2+b^2\right).\left(a^4-a^2b^2+b^4\right)=a^4-a^2b^2+b^4\)

  \(=\left(a^2+b^2\right)-3a^2b^2=1-3a^2b^2\)

ta có : \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow1\ge2ab\Rightarrow1\ge4a^2b^2\Rightarrow\frac{3}{4}\ge3a^2b^2\)

=> \(\frac{-3}{4}\le-3a^2b^2\)

từ đó: \(A=1-3a^2b^2\le1-\frac{3}{4}=\frac{1}{4}\)

Vậy max A = 1/4 khi \(a=b=\frac{1}{\sqrt{2}}.\)

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)