Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau bạn chú ý viết đề bằng công thức toán
Lời giải:
$P=1-\frac{1}{a^2}-\frac{1}{b^2}+\frac{1}{a^2b^2}$
$=1-\frac{a^2+b^2}{a^2b^2}+\frac{1}{a^2b^2}$
$=1-\frac{(a+b)^2-2ab}{a^2b^2}+\frac{1}{a^2b^2}$
$=1-\frac{1-2ab}{a^2b^2}+\frac{1}{a^2b^2}$
$=1+\frac{2}{ab}$
Áp dụng BĐT Cô-si:
$ab\leq \frac{(a+b)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{ab}\geq 8$
$\Rightarrow P=1+\frac{2}{ab}\ge 9$
Vậy $P_{\min}=9$ khi $a=b=\frac{1}{2}$
Ta có : (a-b)^2 >= 0 với mọi a,b
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+2ab+b^2 >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :
a+b/ab >= 4/a+b
<=>1/a + 1/b >=4ab
Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4
Dấu "=" xảy ra <=> a=b ; a+b =1 <=> a=b=1/2
Vậy Min A = 4 <=> x = y= 1/2
`a+ble1<=>(a+b)^2le1`
Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:
`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`
Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`
`<=>a=b=1/2`
Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2`
\(A=a^6+b^6=\left(a^2+b^2\right).\left(a^4-a^2b^2+b^4\right)=a^4-a^2b^2+b^4\)
\(=\left(a^2+b^2\right)-3a^2b^2=1-3a^2b^2\)
ta có : \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow1\ge2ab\Rightarrow1\ge4a^2b^2\Rightarrow\frac{3}{4}\ge3a^2b^2\)
=> \(\frac{-3}{4}\le-3a^2b^2\)
từ đó: \(A=1-3a^2b^2\le1-\frac{3}{4}=\frac{1}{4}\)
Vậy max A = 1/4 khi \(a=b=\frac{1}{\sqrt{2}}.\)