\(2^{2023}\) - \(2^{2022}\) -  \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(b=2^{2022}+2^{2021}+...+2+1\)

=>\(2b=2^{2023}+2^{2022}+...+2^2+2\)

=>\(2b-b=2^{2023}+2^{2022}+...+2^2+2-2^{2022}-2^{2021}-...-2-1\)

=>\(b=2^{2023}-1\)

\(a=2^{2023}-2^{2023}+1=1\)

\(M=\dfrac{2^{2023}+2022}{2023^a-2022}=\dfrac{2^{2023}+2022}{2023-2022}=2^{2023}+2022\)

27 tháng 1 2024

Đây là dạng toán nâng cao chuyên đề về so sánh phân số, cấu trúc thi chuyên, thi học sinh giỏi, thi violympic. Hôm nay olm sẽ hướng dẫn em cách giải dạng này như sau.

                Xét dãy số: 2; 3; 4;...; 2023

     Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1  = 1

      Số số hạng của dãy số trên là: (2023 - 2) : 1  + 1  = 2022

     Vì \(\dfrac{3}{2^2}\) = \(\dfrac{3}{4}\) < 1 ; \(\dfrac{8}{3^2}\) = \(\dfrac{3^2-1}{3^2}\) < 1;...; \(\dfrac{2023^2-1}{2023^2}\) < 1 

                 Vậy A là tổng của 2022 phân số mã mỗi phân số đều nhỏ hơn 1

                  ⇒ A < 1 x 2022 = 2022 (1) 

                  Mặt  khác ta có: 
               A =     \(\dfrac{3}{2^2}\) + \(\dfrac{8}{3^2}\) + \(\dfrac{15}{4^2}\) + \(\dfrac{2023^2-1}{2023^2}\)

               A =  1 - \(\dfrac{1}{2^2}\) + 1  - \(\dfrac{1}{3^2}\) + ... + 1 - \(\dfrac{1}{2023^2}\)

              A =  (1 + 1 + 1+ ...+ 1) - (\(\dfrac{1}{2^2}\)  + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\))

              A = 2022 - (\(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\))

             Đặt B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + .... + \(\dfrac{1}{2023^2}\)

                \(\dfrac{1}{2^2}\)    < \(\dfrac{1}{1.2}\)  = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

                  \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)   =  \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

                   \(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)

                    ............................

                 \(\dfrac{1}{2023^2}\)\(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

                Cộng vế với vế ta có:

             B <  1 - \(\dfrac{1}{2023}\)

      ⇒ - B > -1 + \(\dfrac{1}{2023}\)

⇒ A = 2022 - B > 2022 - 1 + \(\dfrac{1}{2023}\) = 2021 + \(\dfrac{1}{2023}\) ⇒ A > 2021 (2)

Kết hợp (1) và (2) ta có: 

            2021 < A < 2022

Vậy A không phải là số tự nhiên (đpcm)

 

         

              

21 tháng 4 2024

A = 3. \(\dfrac{1}{1.2}\) - 5. \(\dfrac{1}{2.3}\) + 7. \(\dfrac{1}{3.4}\) + ... + 15. \(\dfrac{1}{7.8}\) -17 . \(\dfrac{1}{8.9}\)

1 tháng 2 2019

a) GTNN

b) GTLN

c, GTNN

d,GTNN

1 tháng 2 2019

Ta có:

/x+1/>=0 với mọi x E R

=>A=/x+1/-2019 >= -2019

=> Amin=-2019

Vậy: Amin=-2019 dấu "=" xảy ra khi: x=-1

29 tháng 6 2020

ta lấy:2019:2021=0,994.....

2021:2023=0,998

0,994...<0,998...   vậy:2019/2021<2021/2023

29 tháng 6 2020

Ta thấy:

\(1-\frac{2019}{2021}=\frac{2}{2021}\)

\(1-\frac{2021}{2023}=\frac{2}{2023}\)

Vì \(\frac{2}{2021}>\frac{2}{2023}\)hay \(1-\frac{2019}{2021}>1-\frac{2021}{2023}\)nên \(\frac{2019}{2021}< \frac{2021}{2023}\)

Vậy \(\frac{2019}{2021}< \frac{2021}{2023}\)

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

30 tháng 3 2022

a) \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+......+\frac{1}{2017.2022}\)

\(5A=5.\left(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+.....+\frac{1}{2017.2022}\right)\)

\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+......+\frac{5}{2017.2022}\)

\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+........+\frac{1}{2017}-\frac{1}{2022}\)

\(5A=1-\frac{1}{2022}\)

\(5A=\frac{2022}{2022}-\frac{1}{2022}\)

\(5A=\frac{2021}{2022}\)

\(A=\frac{2021}{2022}\div5\)

\(A=\frac{20201}{10110}\)

TL: 

\(\frac{5}{6}=\frac{1}{2}+\frac{1}{3}\) 

@@@@@@@@@@ 

HT

27 tháng 8 2020

Ta có A = 2 + 22 + 23 + 24 + 25 + 26 + .... + 22020 + 22021 + 22022

=  (2 + 22 + 23) + (24 + 25 + 26) + .... + (22020 + 22021 + 22022)

=  (2 + 22 + 23) + 23(2 + 22 + 23) + ... + 22019(2 + 22 + 23

= 14 + 23.14 + ... + 22019.14

= 14(1 + 23 + ... + 22019)

= 2.7.(1 + 23 + .... + 22019\(⋮\) 7 (1)

Lại có A = 2 + 22 + 23 + 24 + .... + 22021 + 22022

= (2 + 22) + (23 + 24) + .... + (22021 + 22022)

= 2(1 + 2) + 23(1 + 2) + .... + 22021(1 + 2)

= 2.3 + 23.3 + ... + 22021.3

= 3(2 + 23 + ... + 22021\(⋮\) 3 (2)

Vì ƯCLN(7;3) = 1

=> Từ (1)(2) => A \(⋮\)7.3

=> A \(⋮\)21 (ĐPCM)