K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

có chuyện này á thiếu đề là chắc                      

Ta có: a + b + c=0

<=> a + b = -c

<=>(a + b)= -c3

<=> a+ 3a2b + 3ab+ b= -c3

<=> a+ b+ 3ab(a + b)=-c3

<=> a^3 + b^3 + c^3= 3abc

<=> a^3 + b^3 + c^3 - 3abc=0

Áp dụng đẳng thức trên, ta được:

Q= 2014a^3 + 2014b^3 + 2014c^3 -6042abc

  =2014( a^3 + b^3 + c^3 - 3abc)

=0

Vậy Q=0

5 tháng 5 2015

Chia cả tử và mẫu của mỗi phân số tương ứng cho b2015; b2014

=> cần chứng minh: \(\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}>\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}\)

Ta có: \(VT=\frac{\left(\frac{a}{b}\right)^{2015}-1}{\left(\frac{a}{b}\right)^{2015}+1}=\frac{\left(\frac{a}{b}\right)^{2015}+1}{\left(\frac{a}{b}\right)^{2015}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}\)

\(VP=\frac{\left(\frac{a}{b}\right)^{2014}-1}{\left(\frac{a}{b}\right)^{2014}+1}=\frac{\left(\frac{a}{b}\right)^{2014}+1}{\left(\frac{a}{b}\right)^{2014}+1}-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}=1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

Vì a> b > 0 => a/b  > 1. Do đó:

\(\left(\frac{a}{b}\right)^{2015}+1>\left(\frac{a}{b}\right)^{2014}+1\)

=> \(\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}<\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\Rightarrow1-\frac{2}{\left(\frac{a}{b}\right)^{2015}+1}>1-\frac{2}{\left(\frac{a}{b}\right)^{2014}+1}\)

=> VT > VP 

19 tháng 2 2018

sửa lại tí nha

Cho a,b>0 thoa mãn ab>2015a+2016b. CMR: \(a+b>\left(\sqrt{2015}+\sqrt{2016}\right)^2\)

11 tháng 4 2019

a/2015 >b/2015 (vi ban nhan ca 2 ve bdt a>b voi 1 so duong la 1/2015 nen bdt khong doi chieu)

vì a>b nên ta có

2a > 2b (1)

 3a > 3b (2)

=> 3a > 2b

và 2015>2015

=> 3a+2015>2b+2014

21 tháng 11 2015

\(\Leftrightarrow a^2-a+b^2-b=a^3-a+b^3-b=0\)

\(\Leftrightarrow a^2\left(a-1\right)-a\left(a-1\right)=b\left(b-1\right)-b^2\left(b-1\right)\)

\(\Leftrightarrow-a\left(a-1\right)^2=b\left(b-1\right)^2\)

\(A^2\ge0\) và a,b>0 => 

\(-a\left(a-1\right)^2\le0\) và \(b\left(b-1\right)^2\ge0\)

=> a-1=b-1=0

=> a=1 và b=1

=> GT của BT trên = 2

30 tháng 4 2019

Ta có : \(a^{2012}+b^{2012}+a^{2014}+b^{2014}=\left(a^{2012}+a^{2014}\right)+\left(b^{2012}+b^{2014}\right)\ge2a^{2013}+2b^{2013}\)

( AD BĐT Cô - si cho a ; b dương ) 

Dấu " = " xảy ra \(\Leftrightarrow a^{2012}=a^{2014};b^{2012}=b^{2014}\) \(\Leftrightarrow a=b=1\left(a,b>0\right)\)

\(\Rightarrow a^{2015}+b^{2015}=1+1=2\)

15 tháng 12 2016

.

15 tháng 12 2016

j vậy