K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

\(\Leftrightarrow a^2-a+b^2-b=a^3-a+b^3-b=0\)

\(\Leftrightarrow a^2\left(a-1\right)-a\left(a-1\right)=b\left(b-1\right)-b^2\left(b-1\right)\)

\(\Leftrightarrow-a\left(a-1\right)^2=b\left(b-1\right)^2\)

\(A^2\ge0\) và a,b>0 => 

\(-a\left(a-1\right)^2\le0\) và \(b\left(b-1\right)^2\ge0\)

=> a-1=b-1=0

=> a=1 và b=1

=> GT của BT trên = 2

10 tháng 4 2021

1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c

a2+b2+c2=ab+bc+ca

<=> 2( a2+b2+c2 ) =2( ab+bc+ca )

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0

Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c

Lại có a+b+c=3 => a=b=c=1

từ đây bạn thế vào tính M nhé :))

10 tháng 4 2021

2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)

<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)

<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )

=> đpcm 

15 tháng 12 2017

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(a^3+b^3=a+b\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=a+b\)

\(\Rightarrow a^2-ab+b^2=1\)

\(a^2+b^2=a+b\)

\(\Rightarrow a-1-ab+b=0\)

\(\Rightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Rightarrow\left(a-1\right)\left(1-b\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

Thay a = 1, b=1 vaò biểu thức \(a^{2015}+b^{2015}\) ,có :

\(1^{2015}+1^{2015}=1+1=2\)

Vậy ............

7 tháng 10 2019

Ta có :     \(a+b=a^2+b^2=a^3+b^3\)

\(\Rightarrow a+b+a^3+b^2=2\left(a^2+b^2\right)\)

\(\Rightarrow\left(a-2a^2+a^3\right)+\left(b-2b^2+b^3\right)=0\)

\(\Rightarrow a\left(1-2a+a^2\right)+b\left(1-2b+b^2\right)=0\)

\(\Rightarrow a\left(1-a\right)^2+b\left(1-b\right)^2=0\left(1\right)\)

Vì : \(a>0;\left(1-a\right)^2\ge0\)

\(\Rightarrow a\left(1-a\right)^2\ge0\)

Vì : \(b>0;\left(1-b\right)^2\ge0\)

\(\Rightarrow b\left(1-b\right)^2\ge0\)

Do đó :
\(\left(1\right)\Leftrightarrow\hept{\begin{cases}a\left(1-a\right)^2=0\\b\left(1-b\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}1-a=0\\1-b=0\end{cases}\Leftrightarrow}a=b=1}\)

Khi đó : \(a^{2015}+b^{2015}=1^{2015}+1^{2015}=2\)

Chúc bạn học tốt !!!

8 tháng 8 2017

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

Ta lại có: 

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi \(a=b=c\)

Thế vào N ta được

\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame