Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\)
\(=\sqrt{a}+\sqrt{a}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[3]{b}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}+\sqrt[4]{c}\)
Áp dụng BĐT AM-GM ta có:
\(2.\sqrt{a}+3.\sqrt[3]{b}+4.\sqrt[4]{c}\ge9\sqrt[9]{\sqrt{a}.\sqrt{a}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[3]{b}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}.\sqrt[4]{c}}=9.\sqrt[9]{abc}\)
đpcm
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
Nếu \(a\le0\) thì chỉ có số 0 là thỏa mãn (vì nếu \(a< 0\) thì \(\sqrt{a}\) vô nghĩa)
Vậy \(a=0\)
1)
\(9a-6\sqrt{a}+5>0\\ \Leftrightarrow9\cdot0-6\sqrt{0}+5>0\\ \Leftrightarrow9\cdot0-6\cdot0+5>0\\ \Leftrightarrow0-0+5>0\\ \Leftrightarrow5>0\)
Bất đẳng thức cuối cùng đúng, vậy bất đẳng thức đầu tiên đúng
Vậy \(9a-6\sqrt{a}+5>0\left(đpcm\right)\)
Câu 2,3 tương tự
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y;\sqrt[4]{c}=z\)
Cần chứng minh
\(\sqrt[4]{a}+\sqrt[4]{b}>\sqrt[4]{c}=\sqrt[4]{a+b}\)
\(\Rightarrow\left(x^3+y^3\right)^4>\left(x^4+y^4\right)^3\)
Rôi phân phối ra là thấy
Bình phương 2 vế:
\(a+4\sqrt{a}+4>a+4\)
\(\Leftrightarrow4\sqrt{a}>0\) (luôn đúng \(\forall a>0\))
Vậy \(\sqrt{a}+2>\sqrt{a+4}\)
\(\sqrt{a}+2>\sqrt{a+4}\) với a>0
\(\Leftrightarrow\left(\sqrt{a}+2\right)^2>\left(\sqrt{a+4}\right)^2\)
\(\Leftrightarrow a+4+4\sqrt{a}>a+4\)
\(\Leftrightarrow4\sqrt{a}>0\)(LĐ với mọi a>0)
Vì \(\sqrt{a}>0\) với mọi a>o \(\Rightarrow\)4\(\sqrt{a}\)>0
\(\sqrt{a}+2>\sqrt{a+4}\)
\(\Leftrightarrow a+4\sqrt{a}+4>a+4\)
\(\Leftrightarrow4\sqrt{a}>0\)( đúng )
ko biet