K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Với \(a,b>0\)

Ta có theo BĐT Cô-si:

\(a+b\ge2\sqrt{ab}\), và \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot\frac{2}{\sqrt{ab}}=4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\) hay \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

(Dấu bằng xảy ra khi và chỉ khi \(a=b\))

Vậy \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với \(a,b>0\).

NV
20 tháng 3 2022

\(ab+1\le b\Rightarrow a+\dfrac{1}{b}\le1\)

Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x+y\le1\)

Gọi vế trái của BĐT cần chứng minh là P:

\(P=x+\dfrac{1}{x^2}+y+\dfrac{1}{y^2}=\left(\dfrac{1}{x^2}+8x+8x\right)+\left(\dfrac{1}{y^2}+8y+8y\right)-15\left(x+y\right)\)

\(P\ge3\sqrt[3]{\dfrac{64x^2}{x^2}}+3\sqrt[3]{\dfrac{64y^2}{y^2}}-15.1=9\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) hay \(\left(a;b\right)=\left(\dfrac{1}{2};2\right)\)

26 tháng 7 2019

Áp dụng BĐT AM-GM ta có:

\(\left(a+1\right)^2+b^2+1=a^2+2a+1+b^2+1=\left(a^2+b^2\right)+2a+2\ge2\left(ab+a+1\right)\)

\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+1}\le\frac{1}{2\left(ab+a+1\right)}\)(1)

\(\left(b+1\right)^2+c^2+1=b^2+2b+1+c^2+1=\left(b^2+c^2\right)+2b+2\ge2\left(bc+b+1\right)\)

\(\Rightarrow\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)}\)(2)

\(\left(c+1\right)^2+a^2+1=c^2+2c+1+a^2+1=\left(c^2+a^2\right)+2c+2\ge2\left(ca+c+1\right)\)

\(\Rightarrow\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\)(3)

Cộng vế theo vế của (1) ; (2) ; (3) ta được:

\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=b=1\)

27 tháng 6 2015

Ta có: \(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab}{1+b^2}\)

\(1+b^2\ge2b\) \(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)

Do đó: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);  \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Suy ra \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\)

Mặt khác ta có: \(3\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\frac{3}{a+b+c}\le1\)

\(\Rightarrow a+b+c\ge3\)

Do đó; \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\ge3\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

 

28 tháng 8 2019

\(\frac{3}{a^2+b^2}+\frac{2}{ab}=\frac{3}{a^2+b^2}+\frac{3}{2ab}+\frac{1}{2ab}\)

\(\ge\frac{12}{\left(a+b\right)^2}+\frac{1}{2ab}\ge12+\frac{2}{\left(a+b\right)^2}\ge12+2=14\)(đpcm)

Vậy..

17 tháng 7 2017

Ta có:
\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\)

Áp dụng bất đẳng thức AM-GM ta có:

\(\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{2\sqrt{ab}}\\\dfrac{1}{4a}+\dfrac{1}{4b}\ge\dfrac{1}{2\sqrt{16ab}}=\dfrac{1}{2.4\sqrt{ab}}=\dfrac{1}{8\sqrt{ab}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Chúc bạn học tốt!!!

10 tháng 4 2018

a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2.

Điều này mâu thuẫn với giả thiết a + b < 2. Vậy một trong hai số a và b phải nhỏ hơn 1.

b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ. Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.

11 tháng 4 2018

a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2. Điều này mâu thuẫn với giả thiết a + b < 2.

Vậy một trong hai số a và b phải nhỏ hơn 1.

b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ.

Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.