K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Ta có: \(a^2+b^2=a+b\Leftrightarrow4a^2+4b^2=4a+4b\)

\(\Leftrightarrow4a^2-4a+4b^2-4b=0\Leftrightarrow\left(4a^2-4a+1\right)+\left(4b^2-4a+1\right)=2\)

\(\Leftrightarrow\left(2a-1\right)^2+\left(2b-1\right)^2=2\)

Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

\(\Rightarrow\left(2a-1\right)^2+\left(2b-1\right)^2\ge\frac{\left(2a+2b-2\right)}{2}\)

\(\Rightarrow2\ge\frac{\left(2a+2b-2\right)^2}{2}\Leftrightarrow4\ge\left(2a+2b-2\right)^2\)

\(\Leftrightarrow1\ge a+b-1\Leftrightarrow4\ge a+b+2\)

Nhận thấy: \(S=\frac{a}{a+1}+\frac{b}{b+1}=\left(1-\frac{1}{a+1}\right)+\left(1-\frac{1}{b+1}\right)\)

\(=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\Rightarrow2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\)

Do \(a+b+2\le4\)(cmt) \(\Rightarrow\frac{4}{a+b+2}\ge1\Rightarrow2-\frac{4}{a+b+2}\le1\)

Từ đó: \(S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le2-\frac{4}{a+b+2}\le1\)

Suy ra \(Max\) \(S=1\).

Dấu "=" xảy ra khi \(a=b=1.\)

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

17 tháng 4 2018

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b) 

\(\Rightarrow2\ge a+b\) 

Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\) 

Dấu "=" xảy ra khi: a=b=1

17 tháng 4 2022

CM BĐT kiểu j ạ

9 tháng 4 2016

Bài  \(1a.\)  Tìm  \(x,y,z\)  biết \(x^2+4y^2=2xy+1\)   \(\left(1\right)\)  và  \(z^2=2xy-1\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(x^2+4y^2+z^2=4xy\)

\(\Leftrightarrow\)  \(x^2-4xy+4y^2+z^2=0\)

\(\Leftrightarrow\)  \(\left(x-2y\right)^2+z^2=0\)

Do  \(\left(x-2y\right)^2\ge0\)  và  \(z^2\ge0\)  với mọi  \(x,y,z\)

nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra  \(\left(x-2y\right)^2=0\)  và  \(z^2=0\)

\(\Leftrightarrow\)  \(^{x-2y=0}_{z^2=0}\)  \(\Leftrightarrow\)  \(^{x=2y}_{z=0}\)

Từ  \(\left(2\right)\), với chú ý rằng  \(x=2y\)  và  \(z=0\), ta suy ra:

\(2xy-1=0\)  \(\Leftrightarrow\)  \(2.\left(2y\right).y-1=0\)  \(\Leftrightarrow\)  \(4y^2-1=0\)  \(\Leftrightarrow\)  \(y^2=\frac{1}{4}\)  \(\Leftrightarrow\)  \(y=\frac{1}{2}\)  hoặc  \(y=-\frac{1}{2}\)

\(\text{*)}\)  Với  \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\)  thì  \(\left(2\right)\)  \(\Rightarrow\)  \(2.x.\frac{1}{2}-1=0\)  \(\Leftrightarrow\)  \(x=1\)

\(\text{*)}\)  Tương tự với trường hợp  \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)

Vậy, các cặp số  \(x,y,z\)  cần tìm là  \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)

\(b.\)  Vì  \(x+y+z=1\)  nên  \(\left(x+y+z\right)^2=1\)

\(\Leftrightarrow\)  \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)  \(\left(3\right)\)

Mặt khác, ta lại có  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  \(\Rightarrow\)  \(xy+yz+xz=0\)  \(\left(4\right)\) (do  \(xyz\ne0\))

Do đó,  từ  \(\left(3\right)\) và \(\left(4\right)\)  \(\Rightarrow\)  \(x^2+y^2+z^2=1\)

Vậy,  \(B=1\)

9 tháng 4 2016

1a) x=1, y=1/2, z=0

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

19 tháng 6 2017

Ta có:3a2-10ab+3b2=0 nên 4a-8ab+4b2-a2-b2-2ab =0;

=> (2a-2b)2-(a+2ab+b2)  =0  bạn đóng ngoặc trước dấu trừ nên phải đổi dấu nhé;

=>(2a-2b)2=(a+b)2 hai phân số bằng nhau có cùng số mũ nên cơ số phải bằng nhau :

=>2(a-b)=a+b (1);

Thay (1) vào biểu thức trên ta có:\(\frac{a-b}{2\left(a-b\right)}=\frac{1}{2}\)k nha bạn

6 tháng 11 2018

Đặt \(M=\frac{a-b}{a+b}\)

\(3a^2+3b^2=10ab\)

\(3a^2+3b^2-10ab=0\)

\(4a^2-a^2+4b^2-b^2-8ab-2ab=0\)

\(\left[\left(2a\right)^2-2\cdot2a\cdot2b+\left(2b\right)^2\right]-\left(a^2+2ab+b^2\right)=0\)

\(\left(2a-2b\right)^2-\left(a+b\right)^2=0\)

\(\left(2a-2b\right)^2=\left(a+b\right)^2\)

TH1: \(2a-2b=a+b\)

\(\Leftrightarrow2a-2b-a-b=0\)

\(\Leftrightarrow a-3b=0\)

\(\Leftrightarrow a=3b\)

Thay a = 3b vào M ta có :

\(M=\frac{3b-b}{3b+b}=\frac{2b}{4b}=\frac{1}{2}\)

TH2: \(2a-2b=-a-b\)

\(\Leftrightarrow2a-2b+a+b=0\)

\(\Leftrightarrow3a-b=0\)

\(\Leftrightarrow3a=b\)

Thay b = 3a vào M ta có :

\(M=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=\frac{-1}{2}\)

Vậy \(M\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)

P.s: Trịnh Hữu An thiếu t/h nha bạn