Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2\ge2ab\)
Áp dụng vào ta được :
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)(ĐPCM)
giả sử a+b </ 1
khi đó (a+b)2=a2+b2+2ab </ 1 => 1+2ab </ 1 (do a2+b2=1)
=>2ab </ 1-1 = 0 điều này là vô lí vì a,b > 0
=>giả sử sai ,ta có đpcm
ta có : \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\) \(\Leftrightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+b^2}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)
\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
bất đẳng thức này đúng vì ab\(\ge\) 1
Đề đúng : CMR \(a^2+ab+b^2< 1\)
Ta có : Với mọi a > b > 0 thì \(a^3+b^3>a^3-b^3\)
\(\Rightarrow a-b>a^3-b^3\). Vì a - b > 0 , chia cả hai vế của bất đẳng thức cho (a-b) được :
\(a^2+ab+b^2< 1\)(đpcm)
Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\) (đpcm)
Dấu "=" xảy ra <=> \(a=b=\frac{1}{2}\)