K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

ta có : \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\) \(\Leftrightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+b^2}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

bất đẳng thức này đúng vì ab\(\ge\) 1

7 tháng 4 2017

\(a^2+b^2\ge2ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2\ge2ab\)

Áp dụng vào ta được :

\(a^2+1\ge2a\)

\(b^2+1\ge2b\)

\(c^2+1\ge2c\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)(ĐPCM)

15 tháng 8 2020

1) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow a^2+b^2+1-ab+a+b\ge0\)

\(\Leftrightarrow2a^2+2b^2+2-2ab+2a+2b\ge0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2+2a+1\right)+\left(b^2+2b+1\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra \(\Leftrightarrow a=b=-1\)

2/ \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

Áp dụng bđt cosi : \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\frac{1}{a}.\frac{1}{b}}=4\)(ĐPCM)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

3/ \(\frac{a^2+a+1}{a^2-a+1}>0\)

Vì \(\hept{\begin{cases}a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\\a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\Leftrightarrow\frac{a^2+a+1}{a^2-a+1}>0\)(ĐPCM)

1 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra <=> \(a=b=\frac{1}{2}\)