Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cần chứng minh
\(a+b+c\ge ab+bc+ca\)
do \(x^2+y^2+z^2\ge xy+yz+zx\)
đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)
\(BĐT\Leftrightarrow\)∑\(\left(\frac{b^2}{c}+a+b\right)\)\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a+b+c\le\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
\(\Leftrightarrow\frac{\left(a-c\right)^2}{c}+\frac{\left(b-a\right)^2}{a}+\frac{\left(c-b\right)^2}{b}\ge0\)
\(a,b,c\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^2\le c\\0\le abc\le1\end{matrix}\right.\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge0\)
\(\Rightarrow a+b+c-ab+bc+ca+abc\le1\)
\(\Rightarrow a+b^2+c^2-ab-bc-ca\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\) trong 3 số a,b,c có 1 số bằng 1 , 2 số còn lại bằng 0
câu 2 :
ab+ bc + ca = 2015
=> 2015 +a^2 = a^2 + ab + bc + ca
=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)
Tương tự : 2015+b^2 = ( b + c )(b +a )
2015 + c^2 = ( c + a )(c + b ) thay vào ta có :
( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương
Câu 1 ) :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)
=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)
=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)
=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0
=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0
=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)
=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)
=> 2015 - z = 0 hoặc 2015 -x = 0 hoặc 2015 - y = 0
=> z = 2015 hoặc x= 2015 hoặc y = 2015
Vậy trong ba số có ít nhất 1 số bằng 2015
Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)
Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)
\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)
\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:
\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)
Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)
\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..)
Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\) với \(0\le v\le1\)
Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)
Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)
Ta có đpcm.
P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
Lời giải:
Do đây là BĐT hoán vị nên ta hoàn toàn có thể giả sử $b$ nằm giữa $a$ và $c$ rồi dồn về 2 biến $a,c$
Khi đó:
\((b-c)(b-a)\leq 0\)
\(\Leftrightarrow b^2+ac\leq ab+bc\)\(\Rightarrow c(b^2+ac)\leq c(ab+bc)\)
\(\Rightarrow a^2b+b^2c+c^2a\leq a^2b+abc+bc^2=b(a^2+ac+c^2)\)
\(\Rightarrow (a^2b+b^2c+c^2a)(ab+bc+ac)\leq b(a^2+ac+c^2)(ab+bc+ac)\)
Mà:
\(b(a^2+ac+c^2)(ab+bc+ac)=(3-a-c)(a^2+ac+c^2)[(a+c)(3-a-c)+ac]\)
\(=(3-a-c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)
\(=\frac{1}{3}(9-3a-3c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)
\(\leq \frac{1}{3}\left(\frac{9-3a-3c+a^2+ac+c^2+3a+3c-a^2-c^2-ac}{3}\right)^3=\frac{1}{3}.3^3=9\) (theo BĐT AM-GM ngược dấu)
Do đó: \((a^2b+b^2c+c^2a)(ab+bc+ac)\leq 9\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=1$