K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

Ta cần chứng minh

\(a+b+c\ge ab+bc+ca\)

do \(x^2+y^2+z^2\ge xy+yz+zx\)

đặt \(a=\dfrac{2y}{x+z};b=\dfrac{2z}{y+x};c=\dfrac{2x}{z+y}\)

\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{x}{y+z}\ge2\left(\dfrac{xy}{\left(x+z\right)\left(y+z\right)}+\dfrac{yz}{\left(x+z\right)\left(x+y\right)}+\dfrac{zx}{\left(x+y\right)\left(y+z\right)}\right)\)

\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)

dấu ''='' khi \(a=b=c=1\) hoặc \(a=b=2,c=1\)

9 tháng 11 2018

Ma Đức Minh cho hỏi cái dòng đầu tiên :)

1 tháng 5 2018

\(BĐT\Leftrightarrow\)\(\left(\frac{b^2}{c}+a+b\right)\)\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a+b+c\le\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow\frac{\left(a-c\right)^2}{c}+\frac{\left(b-a\right)^2}{a}+\frac{\left(c-b\right)^2}{b}\ge0\)

Y
22 tháng 5 2019

\(a,b,c\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^2\le c\\0\le abc\le1\end{matrix}\right.\)

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Rightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge0\)

\(\Rightarrow a+b+c-ab+bc+ca+abc\le1\)

\(\Rightarrow a+b^2+c^2-ab-bc-ca\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\) trong 3 số a,b,c có 1 số bằng 1 , 2 số còn lại bằng 0

Y
22 tháng 5 2019

nhầm dấu "=" leuleu

Dấu "=" xảy ra <=> trong 3 số a,b,c có 1 số bằng 0, 2 số bằng 1 hoặc 1 số bằng 1, 2 số bằng 0

30 tháng 8 2015

câu 2  :

ab+  bc + ca = 2015 

=> 2015 +a^2 = a^2 + ab + bc + ca 

=> 2015 + a^2 = a(a+b ) + c( a + b ) = ( a + c )( a + b)

Tương tự : 2015+b^2 = ( b + c )(b +a )

 2015 + c^2 = ( c + a )(c + b ) thay vào ta có :

( 2015 + a^2)(2015 + b^2 ) (2015 +c^2) = (a + c )(a+b)(b+c)(b+a)(c+a)(c+b) = [(a+c)(a+b)(b+c) ]^2 là số chính phương 

30 tháng 8 2015

Câu 1 ) :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{2015}-\frac{1}{z}=\frac{z-2015}{2015z}\)

=> \(\frac{x+y}{xy}=\frac{z-2015}{2015z}\)

=> \(2015z\left(x+y\right)=\left(z-2015\right)xy\)

=> \(2015z\left(2015-z\right)-\left(z-2015\right)xy\) = 0 

=> \(\left(2015-z\right)\left(2015z-xy\right)\)= 0

=> \(\left(2015-z\right)\left(2015\left(2015-x-y\right)-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015^2-2015x-2015y-xy\right)=0\)

=> \(\left(2015-z\right)\left(2015-x\right)\left(2015-y\right)=0\)

=> 2015 - z =  0 hoặc 2015 -x = 0 hoặc 2015 - y = 0 

=> z = 2015 hoặc x= 2015 hoặc y = 2015 

Vậy trong ba số có ít nhất 1 số bằng 2015 

23 tháng 1 2020

Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)

Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)

\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)

\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:

\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)

Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)

\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..) 

Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\)  với \(0\le v\le1\)

Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)

Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)

Ta có đpcm.

P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.

23 tháng 1 2020

Quên: 

\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.

\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)

26 tháng 2 2016

toán lớp  thì ko biết

9 tháng 12 2018

a)Bunhia:

\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)

b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bđt câu a

=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)

\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)

Tự tìm dấu "="

9 tháng 12 2018

Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Do đây là BĐT hoán vị nên ta hoàn toàn có thể giả sử $b$ nằm giữa $a$ và $c$ rồi dồn về 2 biến $a,c$

Khi đó:

\((b-c)(b-a)\leq 0\)

\(\Leftrightarrow b^2+ac\leq ab+bc\)\(\Rightarrow c(b^2+ac)\leq c(ab+bc)\)

\(\Rightarrow a^2b+b^2c+c^2a\leq a^2b+abc+bc^2=b(a^2+ac+c^2)\)

\(\Rightarrow (a^2b+b^2c+c^2a)(ab+bc+ac)\leq b(a^2+ac+c^2)(ab+bc+ac)\)

Mà:

\(b(a^2+ac+c^2)(ab+bc+ac)=(3-a-c)(a^2+ac+c^2)[(a+c)(3-a-c)+ac]\)

\(=(3-a-c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)

\(=\frac{1}{3}(9-3a-3c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)

\(\leq \frac{1}{3}\left(\frac{9-3a-3c+a^2+ac+c^2+3a+3c-a^2-c^2-ac}{3}\right)^3=\frac{1}{3}.3^3=9\) (theo BĐT AM-GM ngược dấu)

Do đó: \((a^2b+b^2c+c^2a)(ab+bc+ac)\leq 9\)

(đpcm)

Dấu "=" xảy ra khi $a=b=c=1$