Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\) \(=\left(a\left(a+b\right)+c\left(a+b\right)\right)....\)
Tướng tự bạn tự phân tích là ra kết quả
Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)
\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)
\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)
\(\ge\text{}\Sigma\text{}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)
\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)
\(=2+ab+bc+ca\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cô-si, ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ac\)
\(\Rightarrow ab+bc+ca\le a^2+b^2+c^2\);\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Có: \(a^2+b^2+c^2< 2\left(a^2+b^2+c^2\right)\)(a,b,c>0)
Vậy ta có đpcm.
Câu 4:
Theo BĐT tam giác ta có:
$a< b+c$
$=> a^2< ab+ac$
$b< c+a$
$=> b^2 <bc+ba$
$c<a+b$
$=> c^2 <ca+cb$
Cộng vế với vế 3 BĐT trên ta được:
$a^2+b^2+c^2 < 2(ab+bc+ca) (1)$
Ta có $(a-b)^2+(b-c)^2+(c-a)^2 ≥ 0$ với mọi a,b,c là độ dài 3 cạnh của tam giác
$<=> a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2 ≥ 0$
$<=> 2(a^2+b^2+c^2) ≥ 2(ab+bc+ca)$
$<=> ab+bc+ca ≤ a^2+b^2+c^2 (2)$
Dấu = xảy ra khi $a=b=c$ <=> tam giác đó đều
(1),(2) => đpcm
\(a,b,c\in\left[0;1\right]\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^2\le c\\0\le abc\le1\end{matrix}\right.\)
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Rightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge0\)
\(\Rightarrow a+b+c-ab+bc+ca+abc\le1\)
\(\Rightarrow a+b^2+c^2-ab-bc-ca\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\) trong 3 số a,b,c có 1 số bằng 1 , 2 số còn lại bằng 0
nhầm dấu "="
Dấu "=" xảy ra <=> trong 3 số a,b,c có 1 số bằng 0, 2 số bằng 1 hoặc 1 số bằng 1, 2 số bằng 0