Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)
Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)
\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)
\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:
\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)
Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)
\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..)
Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\) với \(0\le v\le1\)
Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)
Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)
Ta có đpcm.
P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.
P=\(\left(a^2+b^2+c^2+2ab+2ac+2bc\right)+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\)\(+a^3+b^3+c^3-2\left(a^2b+b^2c+c^2a\right)+ab^2+bc^2+ca^2\)\(=1+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(a^3+b^3+c^3\right)\)\(-2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)\(=1+4\left(ab+bc+ca\right)-3\left(a^2b+b^2c+c^2a\right)\)
Mà \(\left(a^2b+b^2c+c^2a\right)\left(b+c+a\right)\ge\left(ab+bc+ca\right)^2\)
=> \(P\le1+4\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)^2\). Đặt \(ab+bc+ca=t\le\frac{1}{3}\)
=> \(P\le-3\left(t^2-\frac{2}{3}t+\frac{1}{9}\right)+2t+\frac{4}{3}\le-3\left(t-\frac{1}{3}\right)^2+\frac{2}{3}+\frac{4}{3}\le2\)
Dấu bằng xảy ra khi \(t=\frac{1}{3}\)<=> \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)
\(=\frac{a^4}{a\left(a^2+ab+b^2\right)}+\frac{b^4}{b\left(b^2+bc+c^2\right)}+\frac{c^4}{c\left(c^2+ca+a^2\right)}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
Cần chứng minh \(\frac{\left(Σ_{cyc}a^2\right)^2}{Σ_{cyc}a\left(a^2+ab+b^2\right)}\ge\frac{Σ_{cyc}a}{3}\)
Nhân ra và nó đúng theo BĐT Schur
đề sai á? tg ns lăng nhăng lên đây thử xem có ai giải k thôi
Lời giải:
Do đây là BĐT hoán vị nên ta hoàn toàn có thể giả sử $b$ nằm giữa $a$ và $c$ rồi dồn về 2 biến $a,c$
Khi đó:
\((b-c)(b-a)\leq 0\)
\(\Leftrightarrow b^2+ac\leq ab+bc\)\(\Rightarrow c(b^2+ac)\leq c(ab+bc)\)
\(\Rightarrow a^2b+b^2c+c^2a\leq a^2b+abc+bc^2=b(a^2+ac+c^2)\)
\(\Rightarrow (a^2b+b^2c+c^2a)(ab+bc+ac)\leq b(a^2+ac+c^2)(ab+bc+ac)\)
Mà:
\(b(a^2+ac+c^2)(ab+bc+ac)=(3-a-c)(a^2+ac+c^2)[(a+c)(3-a-c)+ac]\)
\(=(3-a-c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)
\(=\frac{1}{3}(9-3a-3c)(a^2+ac+c^2)(3a+3c-a^2-c^2-ac)\)
\(\leq \frac{1}{3}\left(\frac{9-3a-3c+a^2+ac+c^2+3a+3c-a^2-c^2-ac}{3}\right)^3=\frac{1}{3}.3^3=9\) (theo BĐT AM-GM ngược dấu)
Do đó: \((a^2b+b^2c+c^2a)(ab+bc+ac)\leq 9\)
(đpcm)
Dấu "=" xảy ra khi $a=b=c=1$