K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

sai đề bài òi bạn điều đó là đúng mà

31 tháng 12 2015

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

                                                                                 \(=\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)

                                                                                \(=\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)>0\)

                                                                                                        (bất đẳng thức tam giác)

\(\Rightarrow\) \(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)

Thấy tao siêu chưa, mới có lớp 6 mà làm được toán lớp 8 nha ( tick nhiều nhiều nha)

31 tháng 12 2015

thằng dinh quoc anh siêu cái gì! Mày nhờ chị mày làm hộ mà còn vênh vênh váo váo!

18 tháng 7 2018

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...