K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)

\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên

\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)

\(\Rightarrow2b\) nguyên

\(\Rightarrowđpcm\)

8 tháng 3 2019

\(36-y^2\le36\)

\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)

\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)

Giai tiep nhe

9 tháng 1 2016

chứng minh đc ak, vô lý k

9 tháng 1 2016

\(2^3=3^4=4^2\)

Thế là vô lý rồi, phép trên ko = nhau.

23 tháng 1 2017

Khai triển: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)

Mặt khác: 

\(a+b+c=2\Rightarrow\left(a+b+c\right)^2=4\)\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=4\)

\(\Leftrightarrow2+2\left(ab+bc+ca\right)=4\Leftrightarrow2\left(ab+bc+ca\right)=2\Leftrightarrow ab+bc+ca=1\)(đpcm)

9 tháng 1 2016

*Giả sử a>b

mà bc=ab>bb

=>bc>bb=>c>b

mà ca=bc<cc

=>ca<cc=>a<c(1)

mà ca=ab<aa

=>ca<aa=>c<a(2)

Từ (1) và (2)=>Vô lí

*Giả sử a<b

mà bc=ab<bb

=>bc<bb=>c<b

mà ca=bc>cc

=>ca>cc=>a>c(3)

mà ca=ab>aa

=>ca>aa=>c>a(4)

Từ (3) và (4)=>Vô lí

         =>a=b( vì a<b vô lí, a>b vô lí)

mà ab=bc

=>aa=ac

=>a=c

Vậy a=b=c

9 tháng 1 2016

chắc bằng 1

27 tháng 2 2020

Xét : \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có :  \(a.\left(a+1\right)\) \(\vdots\) \(2\) \(;\) \(b.\left(b+1\right)\) \(\vdots\) \(2\) \(;\) \(c.\left(c+1\right)\) \(\vdots\) \(2\) \(;\) \(d.\left(d+1\right)\) \(\vdots\) \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) \(\vdots\) \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) \(\vdots\)  \(2\) 

\(\implies\) \(a+b+c+d\) \(\vdots\) \(2\)

Mà \(a^2+b^2+c^2+d^2\) \(\geq\) \(4\) \(\implies\)  \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)

27 tháng 2 2020

mấy phần bị thiếu kia cậu ghi cho tớ là chia hết cho nhé