K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Giả sử  \(a\ge b\ge c>0\)thì    \(a+b\ge a+c\ge b+c\)

Ta có : \(\frac{c}{a+b}\le\frac{c}{b+c}\)  ;   \(\frac{b}{a+c}\le\frac{b}{b+c}\)và    \(\frac{a}{b+c}=\frac{a}{b+c}\)

(mấy cái này có được chẳng qua là dựa vào tính chất của phân số: 2 phân số có cùng tử số  ,thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại 

Cộng từng vế ta được : 

      \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{c}{b+c}+\frac{b}{b+c}+\frac{a}{b+c}\)

 \(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a}{b+c}+1< 1+1=2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\left(dpcm\right)\)

 nếu thấy Đ thì cho mk nka !!! 

6 tháng 1 2017

a=12 b=1 c=4

k đi

25 tháng 3 2017

Ta có:

\(\left(a+b-c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge2ac+2bc-2ab\)

Mà \(a^2+b^2+c^2=\frac{5}{3}< 2\)

\(\Rightarrow2ac+2bc-2ab< 2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

25 tháng 1 2017

A = \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

= \(a.\frac{a}{b+c}+b.\frac{b}{a+c}+c.\frac{c}{a+b}\)

=\(a.\frac{a}{b+c}+1-1+b.\frac{b}{a+c}+1-1+c.\frac{c}{a+b}+1-1\)  

= \(\frac{a\left(a+b+c\right)}{b+c}-a+\frac{b\left(a+b+c\right)}{a+b}-b+\frac{c\left(a+b+c\right)}{a+b}-c\)

= \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)

= (a+b+c) - (a+b+c) = 0 

25 tháng 1 2017

Thu Hà à cảm ơn bạn nhiều lắm!

Chúng ta làm bạn nha!

3 tháng 4 2018

Câu 1:

Ta có phương trình: \(x^2-4x+6=\frac{21}{x^2-4x+10}\)

<=> \(\left(x^2-4x+6\right)\left(x^2-4x+10\right)=21\)

<=> \(\left(x^2-4x+8\right)^2-4=21\)

<=> \(\left(x^2-4x+8\right)^2=25\)

<=> \(x^2-4x+8=\pm5\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\\x^2-4x+13=0\end{cases}}\)

2 phương trình này bạn bấm máy tính là ra nghiệm nha :) Mình làm hơi tắt :0

Câu 3:

Ta sẽ sử dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức: Với a, b, x, y thuộc R thì \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Dấu "=" xảy ra <=> \(\frac{a}{x}=\frac{b}{y}\)

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki dạng phân thức ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)=> đpcm

Câu 4:

Do x > 0 nên ta có: \(x+\frac{1}{x}-2=\left(\sqrt{x}\right)^2-2+\left(\frac{1}{\sqrt{x}}\right)^2=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\forall x>0\)

=> \(x+\frac{1}{x}-2\ge0\Rightarrow x+\frac{1}{x}\ge2\)

=> đpcm

4 tháng 4 2018

  cảm ơn bạn rất nhiều

25 tháng 1 2018

Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :

Đặt x= mẫu thứ nhất (1)

       y=mẫu thứ hai (2)

        z=mẫu thứ ba (3)

Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.

Sau đó rút c= x+y/2(@@@)

Tương tự với (2) và (3), (1) và (2)

Ta có b=x+z/2(@@)... a=y+z/2(@)

Cộng vế với vế của (@), (@@), (@@@) ta có 

vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)

Đặt 1/2 ra sau đó tách các phân số ra như sau 

\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)

Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại 

27 tháng 1 2018

ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu

27 tháng 4 2017

Đặt a+b-c=x

-a+b+c=y

a-b+c=z

=> x+y+z=a+b+c

=>x+y=2b

y+z=2c

x+z=2a

nhân 4 cả hai vế rồi tách ra là đc nha bạn 

Dấu ''='' xảy ra khi và chỉ khi a=b=c

Đặt a+b‐c=x
‐a+b+c=y
a‐b+c=z
=> x+y+z=a+b+c
=>x+y=2b
y+z=2c
x+z=2a
nhân 4 cả hai vế rồi tách ra là đc nha bạn
Dấu ''='' xảy ra khi và chỉ khi a=b=c