K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

a=12 b=1 c=4

k đi

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

2 tháng 9 2015

Vế trái = \(\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=3+\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)\)

Vì a;b;c là độ dài 3 cạnh của tam giác nên a + b > c => \(\frac{c}{a+b}<1\) => \(\frac{c}{a+b}<\frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)

Tương tự, \(\frac{b}{a+c}<\frac{2b}{a+b+c};\frac{a}{b+c}<\frac{2a}{a+b+c}\)

=> \(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}<\frac{2c+2b+2a}{a+b+c}=2\)

Vế trái < 3 + 2 = 5 

=> đpcm

25 tháng 1 2018

Để mình hướng dẫn bằng lời nhé . Nếu đánh ra hết thì rất dài và không tốt cho cậu :

Đặt x= mẫu thứ nhất (1)

       y=mẫu thứ hai (2)

        z=mẫu thứ ba (3)

Cộng vế với vế của (1) và (2) ta được .... Cậu tự tính cho tốt.

Sau đó rút c= x+y/2(@@@)

Tương tự với (2) và (3), (1) và (2)

Ta có b=x+z/2(@@)... a=y+z/2(@)

Cộng vế với vế của (@), (@@), (@@@) ta có 

vế trái bằng \(\frac{y+z}{2x}+\frac{x+z}{2y}+\frac{y+x}{2z}\)

Đặt 1/2 ra sau đó tách các phân số ra như sau 

\(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{y}{z}+\frac{x}{z}\)

Dễ dàng chuyển chúng sang BĐT Cauchy sẽ được kết quả cuối cùng là điều cần phải CM... Khó hiểu có thể hỏi lại 

27 tháng 1 2018

ai có thể giải ra thành bài luôn được ko, bạn ghi mình khồn hiểu

4 tháng 5 2017

Giả sử  \(a\ge b\ge c>0\)thì    \(a+b\ge a+c\ge b+c\)

Ta có : \(\frac{c}{a+b}\le\frac{c}{b+c}\)  ;   \(\frac{b}{a+c}\le\frac{b}{b+c}\)và    \(\frac{a}{b+c}=\frac{a}{b+c}\)

(mấy cái này có được chẳng qua là dựa vào tính chất của phân số: 2 phân số có cùng tử số  ,thì phân số nào có mẫu bé hơn thì lớn hơn và ngược lại 

Cộng từng vế ta được : 

      \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{c}{b+c}+\frac{b}{b+c}+\frac{a}{b+c}\)

 \(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a}{b+c}+1< 1+1=2\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\left(dpcm\right)\)

 nếu thấy Đ thì cho mk nka !!! 

17 tháng 4 2018

kết bạn với mk đi 

19 tháng 8 2016

Đặt \(x=b+c-a,y=c+a-b,z=a+b-c\) , khi đó : \(\begin{cases}2a=y+z\\2b=x+z\\2c=x+y\end{cases}\)

Ta có : \(\frac{2a}{b+c-a}+\frac{2b}{c+a-b}+\frac{2c}{a+b-c}=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)

                                                  \(\ge2+2+2=6\)

\(\Rightarrow\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\ge3\)

30 tháng 8 2016

ta có \(\frac{a}{b+c}-1+\frac{b}{a+c}-1+\frac{c}{a+b}-1=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-3\)     vì a b c là cách cạnh của tam giác nên biểu thức trên >= 3