K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

các bạn làm kiểu gì vậy

13 tháng 3 2019

\(a^2+c^2=b^2+d^2\Leftrightarrow2\left(a^2+c^2\right)=a^2+b^2+c^2+d^2\)

\(2\left(a^2+c^2\right)⋮2\Rightarrow a^2+b^2+c^2+d^2⋮2\)

Xét: \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)⋮2\) (tích 2 số nguyên liên tiếp thì chia hết cho 2)

\(\Rightarrow a+b+c+d⋮2;a+b+c+d>2\left(a;b;c;d\in N>0\right)\)

\(\Rightarrow a+b+c+d\) là hợp số (đpcm)

15 tháng 12 2017

\(a^3-a+b^3-b+c^3-c+d^3-d\)

\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\) chia hết cho 3

Mà \(a^3+b^3=2\left(c^3+d^3\right)\) nên \(a^3+b^3+c^3+d^3=3\left(c^3+d^3\right)\) chia hết cho 3

\(\Rightarrow-a-b-c-d⋮3\Rightarrow a+b+c+d⋮3\)

16 tháng 5 2020

ddd

*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)

Nên c2≡2(mod3)c2≡2(mod3) (Vô lí) 

Nên Tồn tại ab⋮3ab⋮3

*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4

Vậy từ 2 TH trên có đpcmcdvm