Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(a^2+b^2=c^2+d^2\)
\(\Leftrightarrow\left(a+b\right)^2-2ab=\left(c+d\right)^2-2cd\)
\(\Leftrightarrow\left(a+b\right)^2-\left(c+d\right)^2=2\left(ab-cd\right)\)
\(\Leftrightarrow\left(a+b+c+d\right)\left(a+b-c-d\right)=2\left(ab-cd\right)\)
Ta có \(\left(a+b+c+d\right)+\left(a+b-c-d\right)=2\left(a+b\right)\) là số chẵn
\(\Rightarrow\) \(\left(a+b+c+d\right)\) và \(\left(a+b-c-d\right)\) có cùng tính chẵn lẻ
Mặt khác \(\left(a+b+c+d\right)\left(a+b-c-d\right)=2\left(ab-cd\right)\) chia hết cho 2
Nên \(\left(a+b+c+d\right)\) và \(\left(a+b-c-d\right)\) ko thể cùng lẻ
\(\Rightarrow\) \(\left(a+b+c+d\right)\) và \(\left(a+b-c-d\right)\) cùng chẵn
Mà \(a+b+c+d>2\) nên \(a+b+c+d\) là hợp số.
\(\left(a+b+c\right)^2=2016^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+cb+ca\right)=2016^2\)
\(\Leftrightarrow A=a^2+b^2+c^2=2016^2-2\left(ab+cb+ca\right)\) chia hết cho 2
=> A là 1 số chẵn
\(a^3-a+b^3-b+c^3-c+d^3-d\)
\(=\left(a-1\right)a\left(a+1\right)+\left(b-1\right)b\left(b+1\right)+\left(c-1\right)c\left(c+1\right)+\left(d-1\right)d\left(d+1\right)\) chia hết cho 3
Mà \(a^3+b^3=2\left(c^3+d^3\right)\) nên \(a^3+b^3+c^3+d^3=3\left(c^3+d^3\right)\) chia hết cho 3
\(\Rightarrow-a-b-c-d⋮3\Rightarrow a+b+c+d⋮3\)
GT <=> 2(a^2+b^2+c^2+d^2+e^2)-2(ab+ac+ad+ae)>=0
<=> a^2-2a(d+e)+(d+e)^2 - 2de+d^2+e^2+a^2-2a(b+c)+(b+c)^2-2bc+b^2+c^2>=0
<=> (a-d-e)^2 +(d-e)^2+(a-b-c)^2 + (b-c)^2>=0 (đúng)
=> bdt9 đúng
các bạn làm kiểu gì vậy